Active Cutting Edges in Vitrified CBN Grinding Wheels

2006 ◽  
Vol 304-305 ◽  
pp. 1-7 ◽  
Author(s):  
R. Cai ◽  
H.S. Qi ◽  
Guang Qi Cai

Wheel structure has a critical influence on grinding performance especially active cuttingedge density. Experiments were carried out to find out the relationshipbetween active and staticcutting edge density. It was found that there are many more active cutting edges in grinding thanexpected based on chip thickness formulae mainly due to wheel deflection in grinding.

2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


1999 ◽  
Author(s):  
J. R. Pratt ◽  
M. A. Davies ◽  
M. D. Kennedy ◽  
T. Kalmár-Nagy

Abstract A single-degree-of-freedom active cutting fixture is employed to reveal and analyse the hysteretic nature of the lobed stability boundary in a simple machining experiment. Specifically, the seventh stability lobe of a regenerative cutting process is mapped using experimental, analytical, and computational techniques. Then, taking width of cut as a control parameter, the transition from stable cutting to chatter is observed experimentally. The cutting stability is found to possess a substantial hysteresis so that either stable or chattering tool motions can exist at the same nominal cutting parameters, depending on initial conditions. This behavior is predicted by applying nonlinear regenerative chatter theory to an empirical characterization of the cutting force dependence on chip thickness. Time-domain simulations that incorporate both the nonlinear cutting force dependence on chip thickness and the multiple-regenerative effect due to the tool leaving the cut are shown to agree both qualitatively and quantitatively with experiment.


2006 ◽  
Vol 304-305 ◽  
pp. 29-32 ◽  
Author(s):  
Hang Gao ◽  
Y.G. Zheng ◽  
W.G. Liu ◽  
Jian Hui Li

Manufacturing of vitrified bond CBN wheels for internal precision grinding of the air-conditioner compressor piston hole is still big challenge to all of the domestic manufacturers. Recently, by choosing pre-melting mixed CBN abrasives and a proper sintering process, a cost-effective method was conceived to produce grinding wheels of comparative quality. The grinding performance of wheels was evaluated with a series of internal precision grinding of compressor piston hole. Experimental results show that the vitrified bond CBN grinding wheel produced by this method has better grinding performance, and can be substitute to the same type of grinding wheels imported. But the manufacturing cost is only 60% of the wheel imported according to estimation.


2009 ◽  
Vol 76-78 ◽  
pp. 163-168 ◽  
Author(s):  
Taghi Tawakoli ◽  
Abdolreza Rasifard ◽  
Alireza Vesali

The efficiency of using of CBN grinding wheels highly depends on the dressing process as well as on the coolant lubricant used. The Institute of Grinding and Precision Technology (KSF) investigated the performance of vitrified CBN grinding wheels -being dressed using different parameters- while using two different grinding oils and two different water-miscible coolant lubricants. The obtained results show that the performance of the vitrified CBN grinding wheels regarding the quality of the workpiece surface, the grinding forces as well as the wear of the grinding wheel, highly depend on the dressing conditions and the type of the coolant lubricant used. Compared to the water-miscible coolant lubricants, the grinding oils show better results.


2014 ◽  
Vol 77 (9-12) ◽  
pp. 1935-1941 ◽  
Author(s):  
Berend Denkena ◽  
Thilo Grove ◽  
Tim Göttsching ◽  
Eraldo Jannone da Silva ◽  
Reginaldo Teixeira Coelho ◽  
...  

2005 ◽  
Vol 291-292 ◽  
pp. 213-220 ◽  
Author(s):  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
Hitoshi Ohmori ◽  
...  

In V-groove ELID grinding process, to achieve optimal grinding performance and satisfactory surface quality and profile accuracy, metal bonded diamond grinding wheels need to be carefully sharpened. In this paper, we applied the proposed new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing to sharpen the edge of large grinding wheels. The minimum wheel tip radiuses of 6.3 and 8.5µm were achieved for the #4000 and #20000 grinding wheels. The truing mechanisms and sharpening performance are also discussed.


1997 ◽  
Vol 119 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Y. Ichida ◽  
K. Kishi

CBN grinding wheels are increasingly used on a wide range of engineering materials. This paper compares the grinding performance of monocrystalline (M-CBN) and polycrystalline (P-CBN) abrasives with a newly developed nanocrystalline (N-CBN) abrasive, when grinding nickel-based superalloys. The N-CBN grits possess average crystal grain diameters less than 1 μm compared to average primary grain diameters of 2.3 μm for P-CBN. It was found that the nanocrystalline CBN grits possess higher fracture strength which give reduced wear rates and yield an order of magnitude increase in grinding wheel life. Analysis of the cutting edge distribution shows that the reduced wear rate of N-CBN is due to the predominance of a micro-fracturing mode of abrasive wear. The size of this micro-fracturing is considerably smaller in N-CBN than in P-CBN.


2016 ◽  
Vol 34 (1) ◽  
pp. 67-73 ◽  
Author(s):  
R.-Y. Kuo ◽  
J.-J. Junz Wang ◽  
R.-N. Lee

AbstractThe insert groove geometry is an important part of turning tool design. In this article, a systematic design approach is presented for the chip breaker design in turning. The chip breaking ability of various groove geometry of a turning insert is investigated. The ratio of chip thickness to chip curl radius is taken as the index of chip breaking performance. Taguchi method is applied to analyze the contribution to chip breaking performance of each geometric parameter. Response surface methodology is then used to construct a predictive model evaluating the effect of turning conditions and groove geometry on chip breaking performance. The result of this study shows that the feed rate significantly affects chip breaking performance, and that insert with larger land angle, higher back wall and smaller groove is more effective in chip breaking. Among the parameters of the insert groove, the width of the groove has the greatest contribution to chip breaking than the others. The simulation results and predictions are validated by turning experiments.


Sign in / Sign up

Export Citation Format

Share Document