Dynamic Characteristic of HSK Tooling System

2006 ◽  
Vol 315-316 ◽  
pp. 440-444
Author(s):  
Gui Cheng Wang ◽  
S.L. Wang ◽  
Hong Jie Pei ◽  
Wei Guo Wu ◽  
X.J. Hua

According to in-depth analysis of the interface between HSK shank and the spindle, the dynamic characteristic of HSK tool system in high speed machining is studied and numerical simulation is carried out with FEM. The HSK tool system deformation, contact stress and the change law of dynamic stiffness were opened out systematically. The relationship between the dynamic stiffness and loading capacity was given. The rotational speed per minute when HSK taper coordination position fails can be named limit maximum rotational speed Nmax of HSK. This provides the foundation for the design of the high speed machine tool.

2014 ◽  
Vol 684 ◽  
pp. 375-380
Author(s):  
Deng Sheng Zheng ◽  
Jian Chen ◽  
D.F. Tao ◽  
L. Lv ◽  
Gui Cheng Wang

Tooling system for high-speed machining is one of the key components of high-end CNC machine , its stability and reliability directly affects the quality and performance of the machine. Based on the finite element method, developing a 3D finite model of high-speed machining tool system, studying on the stability of the high Speed machining tool from the natural frequency by the method of modal analysis. Analysis the amount of the overhang and clamping of the tooling , different shank taper interference fit and under different speed conditions, which affects the natural frequency of high-speed machining tool system. Proposed to the approach of improving system stability, which also provides a theoretical basis for the development of new high-speed machining tool system.


2012 ◽  
Vol 6 (2) ◽  
pp. 168-174 ◽  
Author(s):  
Haruhisa Sakamoto ◽  
◽  
Taiga Matsuda ◽  
Shinji Shimizu ◽  

In this study, dynamic characteristics are determined based on the impulse response method, the correction of discretization errors and the identification of equivalent physical parameters, as found in the vibration model having one degree of freedom. In the experiments, the test tool is cylindrical bar shaped and made from solid tungsten carbide, and four toolholders with chucking mechanisms, including the shrinkfit type, collet type, hydraulic type, and press-fit type, are used. Since it had been previously confirmed that one of the tool preparation jigs had dynamic characteristics similar to those of an actual machine tool’s spindle, the dynamic characteristics of the jig could be measured the way the spindle system is measured in this study. From the experimental examinations, the following were clarified. (1) Chucking of the tooling system enhances the first mode vibration of the spindle system markedly. (2) The type of tool chuck used changes the dynamic characteristics of the spindle system. The trend in the dynamic stiffness corresponds well with that in the equivalent damping coefficient but is opposite to that in the equivalent stiffness. (3) The magnitude order of the dynamic characteristic parameters of the spindle system corresponds well with the inherent values of the dynamic characteristic parameters of the toolholders themselves; that is, the inherent dynamic characteristics of the tooling system can be used as the criteria to estimate the effect on the dynamic characteristics of the spindle system.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuzhu Guo ◽  
Tianning Chen

High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.


2011 ◽  
Vol 189-193 ◽  
pp. 2046-2049
Author(s):  
Jun Hong Cheng

High-speed machining is playing a more important role in modern manufacturing technology. The feed system of high-speed machine tool is one of the most important components. The linear motor has been widely used in high-speed machine tool. In this paper,a kind of machine tool feed system directly driven by a linear motor is introduced,and its technical parameters are analyzed and calculated. The main parameters’ influence factors and best scope are given out.These results can offer theoretical basis for manufacturing machining technology.


2013 ◽  
Vol 300-301 ◽  
pp. 967-973
Author(s):  
Yong Chen ◽  
He Zhang ◽  
Qi Jiang ◽  
De Zhang Shen

Combining with rotational speed measurement methods and underwater environment particularity, an independent velocity measurement scheme applicable to small underwater high-speed moving body was proposed in this paper. The structural design of the measurement device was designed and signal process method was improved, and the relationship between turbine rotational speed and speed of the body was obtained by FLUNET dynamics simulation and water tunnel experiments. Finally, the simulation and experimental results were analyzed. The results show that this method is effective and feasible within a certain range of accuracy.


2016 ◽  
Vol 836-837 ◽  
pp. 387-393
Author(s):  
De Fei Tao ◽  
Deng Sheng Zheng ◽  
Jian Chen ◽  
Gui Cheng Wang

High-speed chuck is an important component of high speed machining tooling system. Its properties directly affect the performance and processing quality of advanced numerical control machine. Using the finite element method, the research analyzed influence of inertial centrifugal force caused by unbalance on the dynamic characteristics of HSK hydraulic clamping chuck tooling system and systematically revealed variation of shank, chuck and blade point displacement. It is found that blade point, as well as chuck and shank displacement response amplitude of tooling system rises as a whole with the increase of excitation frequency; the dynamic displacement response increment shows linear growth with unbalance amount, which provides a theoretical basis for optimum design and balancing control of HSK hydraulic chunk tooling system.


2011 ◽  
Vol 337 ◽  
pp. 479-488
Author(s):  
Nurhaniza Mohamad ◽  
M.K.A.M. Arifin ◽  
Aidy Ali ◽  
Faizal Mustapha

The thin-web structure component is widely used in aviation and aerospace industries with the reason of light weight and high performance. However, the thin-web components are tending to deflect because of their poor rigidity and the effect of cutting force during cutting process. It is required to perform of high-speed machining that can remove the large number of material in a shorter time in order to allow machining of such structure. The performance of high-speed machining operation is restricted by the static and dynamic stiffness of the tool and part that can cause some problems such as regenerative chatter and ‘push-off’. The tool path plays an important function to avoid the problem occurs as it assists to reduce the workpiece vibration during machining. The optimization of tool path is done by determining the element removal sequences and the materials removal are implemented using milling cutter. The maximum deflection for each element removed is recorded in order to define the optimum solution of element removal sequences. The analysis shows that there are significant effects of workpiece stiffness with relation to the cutting parameters setting.


2010 ◽  
Vol 431-432 ◽  
pp. 142-145
Author(s):  
Song Zhang ◽  
Xing Ai

In the present paper, a dynamic modeling approach is presented to determine the contact stiffness and structural damping between the spindle and the toolholder; and then, the spindle and the toolholder are coupled by some springs and dampers. Finally, the dynamic performances of the HSK-A63 spindle/toolholder interface are analyzed by means of finite element method (FEM). From the simulated results, it can be seen that the natural frequencies of the first two modes increase with the increase of the rotational speed, which make the HSK spindle/toolholder interface appear good dynamic performances and be suitable for high-speed machining.


2010 ◽  
Vol 97-101 ◽  
pp. 3108-3112
Author(s):  
Bing Yan ◽  
Chao Hui Xu ◽  
Wei Wang

The machining characteristics of hardened still for mould and die greatly affect the accuracy and productivity in industry. The physical modeling and simulation of ball end milling is investigated in this paper. The influence of cutting speed to the cutting mechanism in high speed cutting is taken into account and the momentum force of chip is introduced into the model. By analyzing the shape of the chips the relationship between the cutting speed and shear angle is obtained. The model has been tested on 718HH, with appropriate Seco tools. The validation shows that the adjustment between the model and the real force is adequate, both in shape and magnitude.


Sign in / Sign up

Export Citation Format

Share Document