Dry Sliding Wear of Lu2O3 Sialon Ceramics

2006 ◽  
Vol 317-318 ◽  
pp. 351-354
Author(s):  
Mark I. Jones ◽  
Kiyoshi Hirao ◽  
Hideki Hyuga ◽  
Yukihiko Yamauchi

The effects of microstructure and composition on the wear properties of Lu sialon ceramics have been studied under dry sliding conditions through block-on-ring wear tests. Microstructural and compositional effects on wear behaviour were studied by producing both equiaxed and elongated α sialons through the incorporation of additional oxides to promote extended liquid formation and grain growth, and by producing α / β composite materials with elongated β grains. The wear response of the materials is discussed in terms of the dominant wear mechanism under different experimental conditions. Under higher loads, where fracture dominates, materials with improved mechanical properties show better wear resistance and both the composite materials and the elongated α sialons showed lower wear rates than the equiaxed materials due to the elongated grain microstructures. Under low normal loads, fracture does not occur and the dominant wear mechanism is thought to be tribochemically assisted wear. Under these conditions, the equiaxed materials had better wear resistance than the composites, and the Lu-α sialon showed an order of magnitude lower wear rate than an equivalent Y-α sialon, thought to be due to better oxidation resistance and improved refractory nature afforded through the use of the smaller radius cation. The elongated Lu-α sialons under these low load conditions showed wear resistance that was to some extent dependent on the composition of the additional liquid phase, with high SiO2 contents leading to higher wear rates.

2011 ◽  
Vol 415-417 ◽  
pp. 707-710
Author(s):  
Hua Chen ◽  
Hai Ying Sun

Fe-based system powder metallurgy in the as-sintered was investigated on pin-on-rolling wear tester for their dry sliding wear behaviour. The morphology of worn surfaces and wear mechanism were analysed by SEM. Results show the hot-forging deformation quenching and tempered considerably decreased the porosity and improved wear resistance, and compare with quenching microstructure, tempered microstructure has high wear resistance and match of strength-toughness. Fe-2.0Ni-0.4Mo-0.5C-0.6Cr alloy presented best wear characteristics. SEM observations of the worn surface revealed microploughing and plastic deformation and crack were the basic dry sliding wear morphology,and oxidative wear and delamination wear are dominant wear mechanism.


2010 ◽  
Vol 667-669 ◽  
pp. 1101-1106 ◽  
Author(s):  
Chuan Ting Wang ◽  
Nong Gao ◽  
Robert J.K. Wood ◽  
Terence G. Langdon

An Al-1050 alloy was processed by ECAP and HPT, respectively. Dry sliding wear tests were conducted on the as-received and SPD-processed samples under various sliding conditions. A comparison of wear rate indicated that SPD processing decreased the wear resistance. Two main wear mechanisms were observed. The initial wear stage was dominated by severe platelet wear mechanism and later wear was dominated by an oxidation wear mechanism. The results show the severe wear stage of SPD-processed Al-1050 is much longer than that of the as-received Al-1050, which is attributed to the loss of work hardening capacity after SPD processing.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296 ◽  
Author(s):  
Chao Sun ◽  
Nannan Lu ◽  
Huan Liu ◽  
Xiaojun Wang ◽  
Xiaoshi Hu ◽  
...  

In this study, the dry sliding wear behaviors of SiC particle reinforced AZ91D matrix composites fabricated by stirring casting method were systematically investigated. The SiC particles in as-cast composites exhibited typical necklace-type distribution, which caused the weak interface bonding between SiC particles and matrix in particle-segregated zones. During dry sliding at higher applied loads, SiC particles were easy to debond from the matrix, which accelerated the wear rates of the composites. While at the lower load of 10 N, the presence of SiC particles improved the wear resistance. Moreover, the necklace-type distribution became more evident with the decrease of particle sizes and the increase of SiC volume fractions. Larger particles had better interface bonding with the matrix, which could delay the transition of wear mechanism from oxidation to delamination. Therefore, composites reinforced by larger SiC particles exhibited higher wear resistance. Similarly, owing to more weak interfaces in the composites with high content of SiC particles, more severe delamination occurred and the wear resistance of the composites was impaired.


2019 ◽  
Vol 285 ◽  
pp. 63-68 ◽  
Author(s):  
Mnel A. Abdelgnei ◽  
M. Zaidi Omar ◽  
Mariyam Jameelah Ghazali

Earlier work has shown that Al-5.7Si-2Cu-0.3Mg aluminium alloy is suitable for thixoforming process. Here, the dry sliding wear behaviour of the alloy, in the as-cast and thixoformed conditions were investigated. The cooling slope technique was used to produce the alloy with globular microstructure for the thixoforming process. Both the thixoformed and cast samples were subjected to T6 heat treatments prior to the wear tests. The tests were carried out using a pin-on-disc tribometer, against a hardened M2 tool steel disc of 62 HRC at different loads, under dry sliding conditions at fixed sliding speed and sliding distance of 1 m.s–1 and 5 km respectively. The microstructural response, worn surfaces were thoroughly and carefully examined using various methods such as scanning electron microscopy, energy dispersive spectroscopy, and differential scanning calorimetry. The density of the heat treated thixoformed alloys showed significant increase in the hardness property, among others, due to its reduced porosity. Their wear test results also observed that the weight loss of materials increase with an increase in the input load and the sliding distance for all samples. However, the as-cast alloy displayed higher wear rate compared with the thixoformed alloys. In general, the wear mechanisms showed a mixture of abrasive, oxidative and delamination wear (mild wear) at low applied loads and mainly an adhesive (severe wear) at high applied loads.


2015 ◽  
Vol 642 ◽  
pp. 55-59 ◽  
Author(s):  
Shueiwan Henry Juang ◽  
Liang Jing Fan ◽  
Hsu Shuo Chang

In this study, the multi-pass friction stir processing (MP-FSP) technique was performed on ADC6 aluminum alloy + 5 wt% fly ash composite (A5FC) castings to increase their surface area. The dry sliding wear behaviors of the ADC6 alloy, A5FCs, and MP-FSPed A5FCs were evaluated. Dry sliding wear tests were performed using a ring-on-washer machine at a constant rotation speed of 100 rpm for 60 min, and the normal load was 10, 20, 30, and 40 N. The results showed that the MP-FSPed A5FCs had the lowest wear rates in the load range from 10 to 40 N, and adhesive wear was the major wear mechanism in these tests. The increased wear resistance was mainly due to grain refinement and elimination of casting defects after subjecting the ash composite to MP-FSP. The microstructure of the MP-FSPed A5FCs reveals that the sizes of the added raw fly ash particles decreased from micro-to nanoscale levels, and the nanoscale fly ash was uniformly dispersed in the aluminum matrix.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Ozgen Akalin ◽  
K. Vefa Ezirmik ◽  
Mustafa Urgen ◽  
Golam M. Newaz

Wear characteristics of Al6061 composites, reinforced with short NiTi fibers, were investigated. The NiTi/Al6061 composite samples were fabricated using pressure-assisted sintering process in ambient air where the NiTi fibers are aligned unidirectional in the Al matrix. In addition, NiTi/Al6061 composite with 5 wt % SiC particulates and monolithic Al6061 and Al6061 with 5 wt % SiC particulates were processed in similar conditions. The wear tests were performed using a reciprocating tribometer in ball-on-flat configuration where the counterbody material was martensitic steel. The effects of fiber isotropy and SiC reinforcements on wear resistance were experimentally investigated in dry sliding. Wear properties of the samples were studied using an optical profiler and a scanning electron microscope analysis. The results showed that transverse NiTi fibers improve the wear resistance significantly. Samples with transverse fiber orientation show mostly abrasive wear, whereas, monolithic and parallel samples show adhesive wear mechanism. In addition, SiC reinforcements improve the wear resistance of the composite and the monolithic samples. Since the Al6061 matrix material is smeared onto NiTi fibers in a short period, all composite samples show similar frictional characteristics after certain period of running in dry sliding.


Author(s):  
Chandar ◽  
Dr. G Harish ◽  
Gujjala Anil Babu ◽  
Puneeth P ◽  
Dr. H K Shivanand

Liquid metallurgy method based aluminium matrix composites (AMCs) are extensively utilized in diverse engineering applications including shipbuilding, structural, non-structural, automotive, and aerospace owing to their superior strength, weightless, low density, excellent corrosion, and wear resistance. In the present research work, liquid state technique is employed to prepare the LM4/RHA/TiO2 composites containing four different mass proportion of RHA and TiO2. The weight proportion of reinforcements ie RHA-1,3&5 and TiO2 2,5&6 respectively.From the dry sliding wear studies, it is evident that the incorporation of RHA and TiO2 particles into the LM24 aluminium matrix alloy increases the wear resistance properties up to 45% as compared with the dry sliding behaviour of pure aluminium LM4 alloy. Dry sliding wear results revealed that the parameters like varying weight percentage, sliding speed, and applied load are the direct impact on the wear behaviour of the hybrid composites. A reduction of up to 34 % wear rate was observed by incorporation of 5% of RHA and 1% & 6 %of TiO2 particles as compared with the remaining percentage of reinforcements. The developed Coated RHA-TIO2 -LM24 aluminum alloy composite exhibits excellent mechanical properties, can be used in long-term applications in which saving weight is an important feature, such applications include and automotive engine parts and aerospace industry. In automotive industry, it can be used for making Brake disc, Turbo-compressors, Pump supporting parts, rear axle, differential housing.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 986 ◽  
Author(s):  
Qiu ◽  
Xing ◽  
Dong

In this paper, a two-step method, rapid-flow mixing followed by high-pressure compositing was used to prepare a macro-ZTA (ZrO2-toughened Al2O3) particles reinforced high chromium cast iron (HCCI) matrix composite. The method is based on the squeeze casting process without general casting pollution problems. The microstructure, mechanical properties and dry sliding wear performance of the fabricated composite were investigated. The results showed that the particles were distributed uniformly throughout the iron matrix and a tightly bonded interface was obtained. Under dry sliding wear conditions, the wear resistance of the composite was significantly improved in comparison with the HCCI alloy, and the relative wear resistance was 1.8 and 2.9 times at the applied load of 300 and 900 N, respectively. When the load increased from 300 N to 900 N, the wear characteristics of the composite changed from shallow and narrow grooves and scratches to damages in the form of fragmentation of particles, transfer layer and interface cracking.


2011 ◽  
Vol 299-300 ◽  
pp. 265-268 ◽  
Author(s):  
X. F. Wu ◽  
G.A. Zhang

The influence of Sn content on the microstructure and dry sliding wear behaviour of hypereutectic Al-20Si alloy was investigated. The results show that the b-Sn in the alloys precipitates mainly in the form of strips and blocks on the grain boundaries of α-Al phase or the interface of silicon and α-Al phases. The addition of Sn can improve the wear resistance of the hypereutectic Al-20Si alloy.


2010 ◽  
Vol 638-642 ◽  
pp. 3745-3750
Author(s):  
D.R.G. Achar ◽  
M. Kamaraj ◽  
C. S. Ganesh Bavisetty

Cobalt based alloy with the addition of 5 and 10 wt% boron carbide have been deposited by PTA process on stainless substrates effectively. The dry sliding wear performances of the coated alloys have been studied at room as well as at elevated temperatures. Addition of boron carbide to satellite 6 resulted in refinement of grains and formation of complex carbides and borides, which has lead to increase in hardness and wear resistance of the hardfaced layers. Superior wear resistance has been found to be at the composition of Stellite 6 with 5 wt% addition of boron carbide.


Sign in / Sign up

Export Citation Format

Share Document