Porous and Bioactive Alumina Ceramics for Bone Grafts and Tissue Engineering Scaffolds

2007 ◽  
Vol 330-332 ◽  
pp. 975-978 ◽  
Author(s):  
B. Su ◽  
X. He ◽  
S. Dhara ◽  
J.P. Mansell

An environmentally friendly direct foaming method was investigated to produce porous alumina ceramics. Egg white protein was used as a binder and foaming agent. The microstructures show that pores are interconnected with pore size of a few hundreds μm and pore window size of ca. 50 μm. The compressive strength of alumina foam is up to 100 MPa depending on porosity. Bioactivation of alumina was carried out using an alkaline solution treatment. Hydroxylation of alumina was achieved using 5M NaOH at 80°C for 4 days. In vitro assessments of the alumina in a human osteoblast cell-like cell (MG63) culture showed that the bioactivated alumina foams exhibited better cellularity and alkaline phosphatase (ALP) activity compared to untreated alumina foams. The results indicate that it is possible to improve the osseointgration of alumina ceramics by structural and surface modifications and to extend the applications of biocompatible alumina ceramics in biomedical implants and tissue engineering scaffolds.

2012 ◽  
Vol 512-515 ◽  
pp. 1821-1825
Author(s):  
Lin Zhang ◽  
Xue Min Cui ◽  
Qing Feng Zan ◽  
Li Min Dong ◽  
Chen Wang ◽  
...  

A novel microsphere scaffolds composed of chitosan and β-TCP containing vancomycin was designed and prepared. The β-TCP/chitosan composite microspheres were prepared by solid-in-water-in-oil (s/w/o) emulsion cross-linking method with or without pre-cross-linking process. The mode of vancomycin maintaining in the β-TCP/chitosan composite microspheres was detected by Fourier transform infrared spectroscopy (FTIR). The in vitro release curve of vancomycin in simulated body fluid (SBF) was estimated. The results revealed that the pre-cross-linking prepared microspheres possessed higher loading efficiency (LE) and encapsulation efficiency (EE) especially decreasing the previous burst mass of vancomycin in incipient release. These composite microspheres got excellent sphere and well surface roughness in morphology. Vancomycin was encapsulated in composite microspheres through absorption and cross-linking. While in-vitro release curves illustrated that vancomycin release depond on diffusing firstly and then on the degradation ratio later. The microspheres loading with vancomycin would be to restore bone defect, meanwhile to inhibit bacterium proliferation. These bioactive, degradable composite microspheres have potential applications in 3D tissue engineering of bone and other tissues in vitro and in vivo.


2006 ◽  
Vol 7 (6) ◽  
pp. 1751-1757 ◽  
Author(s):  
Forrest A. Landis ◽  
Jean S. Stephens ◽  
James A. Cooper ◽  
Marcus T. Cicerone ◽  
Sheng Lin-Gibson

2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
M. Mozafari ◽  
F. Moztarzadeh ◽  
M. Rabiee ◽  
M. Azami ◽  
N. Nezafati ◽  
...  

In this research, macroporous, mechanically competent and bioactive nanocomposite scaffolds have been fabricated from cross-linked gelatine (Gel) and nano bioactive glass (nBG) through layer solvent casting combined with freeze-drying and lamination techniques. This study has developed a new composition to produce a new bioactive nanocomposite which is porous with interconnected microstructure, pore sizes are 200-500 μm, porosity are 72%-86%. Also, we have reported formation of chemical bonds between nBG and Gel for the first time. Finally, the in vitro cytocompatability of the scaffolds was assessed using MTT assay and cell attachment study. Results indicated no sign of toxicity and cells found to be attached to the pore walls offered by the scaffolds. These results suggested that the developed nanocomposite scaffold possess the prerequisites for bone tissue engineering scaffolds and it can be used for tissue engineering applications.


2016 ◽  
Vol 89 (1) ◽  
pp. 847-853 ◽  
Author(s):  
Zhiyu Liao ◽  
Faris Sinjab ◽  
Amy Nommeots-Nomm ◽  
Julian Jones ◽  
Laura Ruiz-Cantu ◽  
...  

2013 ◽  
Vol 872 ◽  
pp. 257-262 ◽  
Author(s):  
Sergey Ivanovich Tverdokhlebov ◽  
Ksenia Stankevich ◽  
Evgeny N. Bolbasov ◽  
Igor Khlusov ◽  
Irina Kulagina ◽  
...  

The solution blow spinning is presented as a method of obtaining tissue engineering scaffolds. The different forming modes were used and the optimum experimental conditions were found. It is shown that nonwoven polylactide scaffolds with required surface morphology can be obtained. These samples were studied in case of biodegradation in simulation body fluid. It was found that during scaffold dissolution the pH of the solution changes insignificantly (6.85) despite the exponential increase of the monomers of lactic acid. The calcium and phosphorus ion exchange between the scaffold and solution was observed in the surface and bulk of the material what makes possible to use scaffolds for regenerative medicine.


2015 ◽  
Vol 6 (4) ◽  
pp. 1054-1063 ◽  
Author(s):  
Alexander Röder ◽  
Elena García-Gareta ◽  
Christina Theodoropoulos ◽  
Nikola Ristovski ◽  
Keith Blackwood ◽  
...  

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Malgorzata Lewandowska-Szumieł ◽  
Janusz Kozakiewicz ◽  
Piotr Mrówka ◽  
Agnieszka Jurkowska ◽  
Edyta Sienkiewicz-Łatka ◽  
...  

AbstractSilicone-urethanes, polymers combining the characteristics of two widely used biomaterials, i.e. polyurethanes and silicones, are highly valued in many applications, including medical implants. To assess properties of these materials in contact with living cells, a set of different silicone-urethane materials, candidates for tissue engineering scaffolds, was synthesized and characterized. Two different oligomeric siloxane diols: Tegomer-2111 (Teg) and KF-6001 (KF), and two different types of diisocyanate, MDI and IPDI, were used in synthesis. Blood platelets adhesion to surfaces of selected materials showed a higher thrombogenicity of material based on Teg. Human fibroblasts were used in in vitro biocompatibility tests. The viability of cells cultured on silicone-urethanes was tested by XTT assay. Teg-based silicone-urethanes showed a significantly higher biocompatibility than those based on KF. Materials based on MDI compared to IPDI were found to be significantly more favoured by cells, not necessarily due to the type of diisocyanate but maybe also because of the necessity of using potentially toxic catalyst which accompanies the use of IPDI. Our studies indicate that silicone-urethanes are potent materials for tissue engineering products development. On the basis of the observations performed in cell culture, Tegomer- 2111 as oligomeric siloxane diol and MDI as diisocyanate are recommended as starting materials for silicone-urethane scaffolds synthesis.


Sign in / Sign up

Export Citation Format

Share Document