Propagation Characteristics of Lamb Waves in Stringer-Stiffened Panels

2007 ◽  
Vol 334-335 ◽  
pp. 637-640
Author(s):  
Chun Hui Yang ◽  
Zhong Qing Su ◽  
Lin Ye ◽  
Ye Lu ◽  
Michael Bannister

Stringer-stiffened plate-like structure is a typical engineering structure and its structural integrity is critical. A guided Lamb wave-based damage identification scheme and an online structural health monitoring (SHM) system with an integrated PZT-sensor network were developed. In the previous studies, the specimens were relatively simple. In this paper, the abovementioned method was extended to the stiffened plate-like structure—a flat plate reinforced by stringer. FE dynamic simulation was applied to investigate the Lamb wave propagation characteristics due to the existence of stringer with the consideration of its material and geometric configurations.

Author(s):  
Jacob Brown ◽  
Whitney Reynolds ◽  
Derek Doyle ◽  
Andrei Zagrai

The use of elastic wave based Structural Health Monitoring has shown its usefulness in both characterizing and diagnosing composite structures. Techniques using elastic wave SHM are being developed to allow for improved efficiency and assurance in all stages of space structure development and deployment. These techniques utilize precise understanding of wave propagation characteristics to extract meaningful information regarding the health and validity of a component, assembly, or structure. However, many of these techniques focus on the diagnostic of traditional, isotropic materials, and questions remain as to the effect of the orthotropic properties of resin matrix composite material on the propagation of elastic waves. As the demands and expectations placed upon composite structures continue to expand in the space community, these questions must be addressed to allow the development of elastic wave based SHM techniques that will enable advancements in areas such as automated build validation and qualification, and in-situ characterization and evaluation of increasingly complex space structures. This study attempts to aid this development by examines the effect of cross ply, off-axis fiber orientation on the propagation characteristics of lamb waves. This is achieved by observing the result of symmetric and anti-symmetric wave propagation across materials in cases containing both off-axis and axially-aligned elements. In both cases the surface plies of the test specimen are axially aligned with the wave propagation direction. Using these results, the relative effect of core ply orientation on lamb wave propagation, and lamb wave sensitivity to bulk properties, or alternatively, the dominance of surface properties on propagation characteristics, can be seen, and this information can be used to aid in future research and application of lamb waves for interrogation of advanced, high-strain composite space structures. It was found that the core orientation caused significant variation in the S0 wave velocity, while yielding little influence on the A0 wave velocity.


2015 ◽  
Vol 1094 ◽  
pp. 500-504
Author(s):  
Hamada M. Elgamal ◽  
Zai Lin Yang ◽  
Jian Wei Zhang

Understanding the characteristics of Lamb waves is very important for developing a structural health monitoring system. The propagation characteristics of Lamb waves are described in the form of dispersion curves, which are plots of phase/group velocities versus the product offrequency-thicknessgenerated by solving the Lamb wave equations. This paper presents a numerical modeling of Lamb waves’ amplitude behaviors for isotropic aluminum plate (Al 2024-T3). The numerical simulations were carried out using ANSYS by exciting the Lamb wave at the plate end in the frequency range of 150-200 kHz for different plate thicknesses.


Author(s):  
Bao Chi Ha ◽  
Kevin Gilbert ◽  
Gang Wang

Because of their electro-mechanical coupling property, Lead-Zirconate-Titanate (PZT) materials have been widely used for ultrasonic wave sensing and actuation in structural health monitoring applications. In this paper, a PZT rosette concept is proposed to conduct Lamb wave-based damage detection in panel-like structures by exploring its best directional sensing capability. First, a directivity study was conducted to investigate sensing of flexural Lamb wave propagation using a PZT fiber having d33 effects. Then, commercial off-the-shelf PZT fibers were polarized in-house in order to construct the PZT rosette configuration, in which three PZT fibers are oriented at 0°, 45°, 90°, respectively. Since Lamb wave responses are directly related to measured PZT fiber voltage signals, a simple interrogation scheme was developed to calculate principal strain direction in order to locate an acoustic source. Comprehensive tests were conducted to evaluate the performance of the proposed PZT rosette using an aluminum plate. It is shown that the PZT rosette is able to sense Lamb wave responses and accurately locate an acoustic source. We expect to further evaluate the PZT rosette performance when damages are introduced.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2745 ◽  
Author(s):  
Ruihua Li ◽  
Hao Li ◽  
Bo Hu

Large generators are the principal pieces of equipment in power systems, and their operation reliability critically depends on the stator insulation. Damages in stator insulation will gradually lead to the failure and breakdown of generator. Due to the advantages of Lamb waves in Structural health monitoring (SHM), in this study, a distributed piezoelectric (PZT) sensor system and hybrid features of the Lamb waves are introduced to identify stator insulation damage of large generator. A hierarchical probability damage-imaging (PDI) algorithm is proposed to tackle the material inhomogeneity and anisotropy of the stator insulation. The proposed method includes three steps: global detection using correlation coefficients, local detection using Time of flight (ToF) along with the amplitude of damage-scattered Lamb wave, and final images fusion. Wavelet Transform was used to extract the ToF of Lamb wave in terms of the time-frequency domain. Finite Element Modeling (FEM) simulation and experimental work were carried out to identify four typical stator insulation damages for validation, including inner void, inner delamination, puncture, and crack. Results show that the proposed method can precisely identify the location of stator insulation damage, and the reconstruction image can be used to identify the size of stator insulation damage.


2020 ◽  
Vol 10 (22) ◽  
pp. 8104
Author(s):  
Sang-Jin Park ◽  
Hoe-Woong Kim ◽  
Young-Sang Joo

In this paper, leaky Lamb wave radiation from a waveguide plate with finite width is investigated to gain a basic understanding of the radiation characteristics of the plate-type waveguide sensor. Although the leaky Lamb wave behavior has already been theoretically revealed, most studies have only dealt with two dimensional radiations of a single leaky Lamb wave mode in an infinitely wide plate, and the effect of the width modes (that are additionally formed by the lateral sides of the plate) on leaky Lamb wave radiation has not been fully addressed. This work aimed to explain the propagation behavior and characteristics of the Lamb waves induced by the existence of the width modes and to reveal their effects on leaky Lamb wave radiation for the performance improvement of the waveguide sensor. To investigate the effect of the width modes in a waveguide plate with finite width, propagation characteristics of the Lamb waves were analyzed by the semi-analytical finite element (SAFE) method. Then, the Lamb wave radiation was computationally modeled on the basis of the analyzed propagation characteristics and was also experimentally measured for comparison. From the modeled and measured results of the leaky radiation beam, it was found that the width modes could affect leaky Lamb wave radiation with the mode superposition and radiation characteristics were significantly changed depending on the wave phase of the superposed modes on the radiation surface.


2019 ◽  
Vol 18 (5-6) ◽  
pp. 1789-1802 ◽  
Author(s):  
Subir Patra ◽  
Hossain Ahmed ◽  
Mohammadsadegh Saadatzi ◽  
Sourav Banerjee

In this article, experimental verification and validation of a peridynamics-based simulation technique, called peri-elastodynamics, are presented while simulating the guided Lamb wave propagation and wave–damage interaction for ultrasonic nondestructive evaluation and structural health monitoring applications. Peri-elastodynamics is a recently developed elastodynamic computation tool where material particles are assumed to interact with the neighboring particles nonlocally, distributed within an influence zone. First, in this article, peri-elastodynamics was used to simulate the Lamb wave modes and their interactions with the damages in a three-dimensional plate-like structure, while the accuracy and the efficacy of the method were verified using the finite element simulation method (FEM). Next, the peri-elastodynamics results were validated with the experimental results, which showed that the newly developed method is more accurate and computationally cheaper than the FEM to be used for computational nondestructive evaluation and structural health monitoring. Specifically, in this work, peri-elastodynamics was used to accurately simulate the in-plane and out-of-plane symmetric and anti-symmetric guided Lamb wave modes in a pristine plate and was extended to investigate the wave–damage interaction with damage (e.g. a crack) in the plate. Experiments were designed keeping all the simulation parameters consistent. The accuracy of the proposed technique is confirmed by performing error analysis on symmetric and anti-symmetric Lamb wave modes compared to the experimental results for pristine and damaged plates.


2006 ◽  
Vol 326-328 ◽  
pp. 1697-1700
Author(s):  
Heoung Jae Chun ◽  
Choong Hee Yi ◽  
Joon Hyung Byun

The embedded structural health monitoring system is envisioned to be an important factor of future structural systems. One of the many attractions of in situ health monitoring system is its capability to inspect the structural systems in less intrusive way over many other visual inspections which require disassembly of built up structures when some indications have appeared that damages have occurred in the structural systems The vacuum assisted resin transfer molding (VARTM) process is used to fabricate woven-glass/phenol composite specimens which have the PZT sensor array embedded in them. The embedded piezoceramic (PZT) sensors are used as both transmitters and receivers. A damage identification approach is developed for a woven-glass/phenol composite laminates with known localized defects. Propagation of the Lamb waves in laminates and their interactions with the defects are examined. Lamb waves are generated by the high power ultrasonic analyzer. A real time active diagnosis system is therefore established. The results obtained show that satisfactory detection accuracy could be achieved by proposed method.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Songlai Wang ◽  
Wanrong Wu ◽  
Yiping Shen ◽  
Hui Li ◽  
Binlong Tang

Directional piezoelectric sensors can detect the Lamb wave propagation direction to locate damage in structural health monitoring (SHM). The directivity of the round piezoelectric fiber is exploited with a 0°/45°/90° rosette configuration to acquire flexural Lamb wave signals. The directional response of the piezoelectric fiber under narrowband tone-burst excitation is theoretically deduced. Experimental tests are conducted to demonstrate the directivity and the frequency response property of the piezoelectric fiber under different excitation central frequencies in comparison with the MFC, rectangular piezoelectric sheet, and circular piezoelectric disc. Continuous wavelet transform (CWT) is applied to extract the maximum response amplitude information of the acquired Lamb wave signal at a central frequency. Experimental test results indicate that the piezoelectric fiber is capable to be used as a Lamb wave directional sensor than other piezoelectric sensors. A numerical estimation method for the Lamb wave propagation direction is proposed by defining an error function between the theoretical and experimental normalized response amplitude. The proposed method is generally applicable for different rosette configurations. Experimental results validate the accuracy of the proposed estimation method. The research results are significant to design or select the piezoelectric sensor to measure Lamb wave signals.


Sign in / Sign up

Export Citation Format

Share Document