Development and Characterization of Nano-TiO2/HA Composite Bioceramic Coating on Titanium Surface

2007 ◽  
Vol 336-338 ◽  
pp. 1802-1805 ◽  
Author(s):  
Gang He ◽  
Xia Deng ◽  
Yuan Kun Cen ◽  
Xiao Yu Li ◽  
En Luo ◽  
...  

This research is aimed at the development and characterization of a novel bioceramic coating on the surface of pure titanium. Nano-TiO2/HA composite bioceramic coating was designed and developed on the surfaces of pure titanium discs by sol-gel route. The TiO2 anatase bioceramic coating was employed as the inner layer, which could adhere tightly to the titanium substrate. The porous HA bioceramic coating was employed as the outer layer, which has higher solubility and better short term bioactivity. Conventional HA coatings and commercially pure titanium (cpTi) were taken as control. XRD and SEM were employed to characterize the crystallization, surface morphology and thickness of the coatings. The bioactivities of the coatings were evaluated by the in vitro osteoblasts culture. Results show the nano-TiO2/HA composite bioceramic coating has good crystallization and homogeneous, nano-scale surface morphology. And it adheres tightly to the substrate. The in vitro osteoblasts culture exhibits satisfactory bioactivity.

2007 ◽  
Vol 330-332 ◽  
pp. 333-336 ◽  
Author(s):  
Xiao Xiao Cai ◽  
Ping Gong ◽  
Yi Man ◽  
Zhi Qing Chen ◽  
Gang He

This research was aimed at the construction and characterization of nano-FHA bioceramic coating on titanium surface. Nano-FHA coating was constructed on the surface of commercially pure titanium by sol-gel route. X-ray diffraction (XRD), scanning electromicroscope (SEM) and dissolution test was employed to characterize the obtained coating. In vitro cellular responses of osteoblasts to the coating were also evaluated by MTT assay, ALP assay and SEM observation. Conventional HA coatings and commercially pure titanium (cpTi) were taken as control. Results show the nano-FHA bioceramic coating has good crystallization and homogeneous, nano-scale surface morphology. The dissolution rate of the coating is favorable. The in vitro osteoblasts culture exhibits satisfactory bioactivity.


2018 ◽  
Vol 69 (6) ◽  
pp. 1416-1418
Author(s):  
Alexandru Szabo ◽  
Ilare Bordeasu ◽  
Ion Dragos Utu ◽  
Ion Mitelea

Hydroxyapatite (HA) is a very common material used for biomedical applications. Usually, in order to improve its poor mechanical properties is combined or coated with other high-strength materials.The present paper reports the manufacturing and the biocompatibility behaviour of two different biocomposite coatings consisting of alumina (Al2O3) and hydroxyapatite (HA) using the high velocity oxygen fuel (HVOF) spraying method which were deposited onto the surface of a commercially pure titanium substrate. The biological properties of the Al2O3-HA materials were evaluated by in vitro studies. The morphology of the coatings before and after their immersing in the simulated body fluid (SBF) solution was characterized by scanning electron microscopy (SEM). The results showed an important germination of the biologic hydroxyapatite crystallite on the surface of both coatings.


2012 ◽  
Vol 522 ◽  
pp. 152-155 ◽  
Author(s):  
Xin Mei Li ◽  
Xiao Feng Dong ◽  
Tu Erxun Si Dike ◽  
Kai Jie Li ◽  
Dong Yu

Porous nanocrystalline thick Ti (CxN1-x) films which bond firmly to the substrate are obtained on commercially pure titanium and Ti6Al4V alloy by plasma electrolytic carbonitriding (PECN) treatment. The microstructures and compositions of the modified layer on different substrates were compared. The results showed that the modified layer is composed of the outer Ti (CxN1-x) film and the diffusion layer. When discharge-treated for 150 min, the thickness of the Ti (CxN1-x) film is ~15μm, irrespective of the different substrate. The TiH2 riched diffusion layer which is 40-45μm thick is located beneath the Ti (CxN1-x) film for the pure titanium substrate, while for Ti6Al4V alloy it is the β-Ti-riched layer which is ~100 μm thick.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 48283-48293 ◽  
Author(s):  
Danieli C. Rodrigues ◽  
Sathyanarayanan Sridhar ◽  
Izabelle M. Gindri ◽  
Danyal A. Siddiqui ◽  
Pilar Valderrama ◽  
...  

The surface morphology and chemical composition of commercially pure titanium dental implants and healing abutments exposed in vitro or in vivo to oral bacteria were studied.


2020 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Mochammad Dachyar Effendi ◽  
Razie Hanafi ◽  
Utari Pusparini ◽  
Sara Aisyah Syafira

Hydroxyapatite (HAp) coating on metallic implant was developed to increase bioactivity of orthopaedic implant. In this work, hydroxyapatite was successfully deposited on commercially pure titanium (CP-Ti) substrate by electrophoretic deposition (EPD). This work aims to determine the effect of dimethylformamide (DMF) as dispersant for EPD suspension followed by heat treatment, on the surface morphology of the HAp coating. HAp powder was suspended in an ethanol-DMF solution with the amount of DMF designed at 0, 5, 10, and 15% per 100 mL suspension. EPD was then performed successfully on all samples. After EPD, the specimens were sintered at 800 °C for 120 minutes in argon atmosphere. Surface morphology, composition, and phase of HAp coating before and after sintering were characterized by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, and X-ray Diffractometer. X-ray and IR spectra confirmed that sintering had a little effect on the chemical structure and the phase of the deposited HAp. The morphology of the surface is denser across all samples and shows distinguishable features as the amount of DMF in the system was increased. The 15% DMF sample exhibits the mostly grooved surface after sintering. Further analysis showed that sintering reduced the EPD-related shrinkage on the surface and enhanced the size of the pores. Microstructural indication referring to previous research suggested that this type of microscopic surface is very sought after in promoting a good biological interaction between the implant and the host. Further testing must be done to confirm the effect of DMF-modified structure in living tissue.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 224 ◽  
Author(s):  
Jung-Eun Park ◽  
Yong-Seok Jang ◽  
Tae-Sung Bae ◽  
Min-Ho Lee

Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium.


2013 ◽  
Vol 739 ◽  
pp. 196-200 ◽  
Author(s):  
T.M. Yue ◽  
K.J. Huang ◽  
H. Xie

A three-layer Ti-Si graded coating was fabricated on a commercially pure titanium substrate by laser cladding with Ti-5.8 at%Si, Ti-9.0 at%Si and Ti-13.5 at%Si mixed powders. The microstructure of the three layers comprised Ti-Si solid solutions (Ti) and the Ti5Si3 compound. As the silicon content was increased, the microstructure along the direction of deposition underwent a series of changes, including replacement of the (Ti) phase by the primary Ti5Si3 phase, and a change of the (Ti)/Ti5Si3 eutectic growth from lamellar to anomalous.


2018 ◽  
Vol 154 ◽  
pp. 147-160 ◽  
Author(s):  
Ehsan Farabi ◽  
Peter D. Hodgson ◽  
Gregory S. Rohrer ◽  
Hossein Beladi

Sign in / Sign up

Export Citation Format

Share Document