scholarly journals Effect of Sintering and Concentration of Dymethylformamide on Surface Properties of Hydroxyapatite Coating on Titanium Substrate Fabricated by Electrophoretic Deposition

2020 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Mochammad Dachyar Effendi ◽  
Razie Hanafi ◽  
Utari Pusparini ◽  
Sara Aisyah Syafira

Hydroxyapatite (HAp) coating on metallic implant was developed to increase bioactivity of orthopaedic implant. In this work, hydroxyapatite was successfully deposited on commercially pure titanium (CP-Ti) substrate by electrophoretic deposition (EPD). This work aims to determine the effect of dimethylformamide (DMF) as dispersant for EPD suspension followed by heat treatment, on the surface morphology of the HAp coating. HAp powder was suspended in an ethanol-DMF solution with the amount of DMF designed at 0, 5, 10, and 15% per 100 mL suspension. EPD was then performed successfully on all samples. After EPD, the specimens were sintered at 800 °C for 120 minutes in argon atmosphere. Surface morphology, composition, and phase of HAp coating before and after sintering were characterized by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, and X-ray Diffractometer. X-ray and IR spectra confirmed that sintering had a little effect on the chemical structure and the phase of the deposited HAp. The morphology of the surface is denser across all samples and shows distinguishable features as the amount of DMF in the system was increased. The 15% DMF sample exhibits the mostly grooved surface after sintering. Further analysis showed that sintering reduced the EPD-related shrinkage on the surface and enhanced the size of the pores. Microstructural indication referring to previous research suggested that this type of microscopic surface is very sought after in promoting a good biological interaction between the implant and the host. Further testing must be done to confirm the effect of DMF-modified structure in living tissue.

2018 ◽  
Vol 69 (6) ◽  
pp. 1416-1418
Author(s):  
Alexandru Szabo ◽  
Ilare Bordeasu ◽  
Ion Dragos Utu ◽  
Ion Mitelea

Hydroxyapatite (HA) is a very common material used for biomedical applications. Usually, in order to improve its poor mechanical properties is combined or coated with other high-strength materials.The present paper reports the manufacturing and the biocompatibility behaviour of two different biocomposite coatings consisting of alumina (Al2O3) and hydroxyapatite (HA) using the high velocity oxygen fuel (HVOF) spraying method which were deposited onto the surface of a commercially pure titanium substrate. The biological properties of the Al2O3-HA materials were evaluated by in vitro studies. The morphology of the coatings before and after their immersing in the simulated body fluid (SBF) solution was characterized by scanning electron microscopy (SEM). The results showed an important germination of the biologic hydroxyapatite crystallite on the surface of both coatings.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Ruzil Farrakhov ◽  
Olga Melnichuk ◽  
Evgeny Parfenov ◽  
Veta Mukaeva ◽  
Arseniy Raab ◽  
...  

The paper compares the coatings produced by plasma electrolytic oxidation (PEO) on commercially pure titanium and a novel superelastic alloy Ti-18Zr-15Nb (at. %) for implant applications. The PEO coatings were produced on both alloys in the identical pulsed bipolar regime. The properties of the coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The PEO process kinetics was modeled based on the Avrami theorem and Cottrell equation using a relaxation method. The resultant coatings contain TiO2, for both alloys, and NbO2, Nb2O5, ZrO2 for Ti-18Zr-15Nb alloy. The coating on the Ti-18Zr-15Nb alloy has a higher thickness, porosity, and roughness compared to that on cp-Ti. The values of the kinetic coefficients of the PEO process—higher diffusion coefficient and lower time constant for the processing of Ti-18Zr-15Nb—explain this effect. According to the electrochemical studies, PEO coatings on Ti-18Zr-15Nb alloy provide better corrosion protection. Higher corrosion resistance, porosity, and roughness contribute to better biocompatibility of the PEO coating on Ti-18Zr-15Nb alloy compared to cp-Ti.


2007 ◽  
Vol 336-338 ◽  
pp. 1802-1805 ◽  
Author(s):  
Gang He ◽  
Xia Deng ◽  
Yuan Kun Cen ◽  
Xiao Yu Li ◽  
En Luo ◽  
...  

This research is aimed at the development and characterization of a novel bioceramic coating on the surface of pure titanium. Nano-TiO2/HA composite bioceramic coating was designed and developed on the surfaces of pure titanium discs by sol-gel route. The TiO2 anatase bioceramic coating was employed as the inner layer, which could adhere tightly to the titanium substrate. The porous HA bioceramic coating was employed as the outer layer, which has higher solubility and better short term bioactivity. Conventional HA coatings and commercially pure titanium (cpTi) were taken as control. XRD and SEM were employed to characterize the crystallization, surface morphology and thickness of the coatings. The bioactivities of the coatings were evaluated by the in vitro osteoblasts culture. Results show the nano-TiO2/HA composite bioceramic coating has good crystallization and homogeneous, nano-scale surface morphology. And it adheres tightly to the substrate. The in vitro osteoblasts culture exhibits satisfactory bioactivity.


2012 ◽  
Vol 506 ◽  
pp. 66-69 ◽  
Author(s):  
Teerawat Loanapakul ◽  
A. Rakngarm Nimkerdphol ◽  
Yuichi Otsuka ◽  
Yoshiharu Mutoh

Plasma sprayed Hydroxyapatite (HAp) coating on commercially pure titanium (cp-Ti) is widely used as implant materials. In this study, fatigue behavior of as-sprayed HAp top coat with HAp/Ti bond coat specimen under ambient environment (A-HTi) as well as under simulated body fluid, SBF, environment (I-HTi) at 36.5°C was investigated by four point bending fatigue test at a stress amplitude of 170 MPa under various frequencies. In order to investigate apatite precipitation during fatigue loading, the test specimen was immersed in SBF at 36.5°C during the fatigue test. For comparison, the test specimen was immersed in SBF at 36.5°C for a day to a week without fatigue loading and then the fatigue test of the immersed specimen was carried out under ambient environment (I-A-HTi). The fatigue loading would not influence the apatite precipitation in the HAp coating layer of the specimen. The fatigue lives of the I-HTi and I-A-HTi specimens were shorter compared to that of A-HTi specimen. The shorter fatigue lives of the I-HTi and I-A-HTi specimens would result from the attack of SBF on titanium substrate. However, the apatite precipitation in the coating layer up to one week immersion did not significantly influence the delamination between HAp top coat and cp-Ti substrate under the bending fatigue.


2008 ◽  
Vol 368-372 ◽  
pp. 1201-1202
Author(s):  
Q. Ma ◽  
Y.J. Wang ◽  
Cheng Yun Ning ◽  
Hai Mei Cheng ◽  
Zhao Yi Yin

Porous bioactive thin film on commercially pure titanium substrate was prepared by micro-arc oxidation (MAO) in electrolytic solution, which contained calcium acetate, β-glycerol phosphate disodium salt pentahydrate (β-GP) and lanthanum nitrate. The phases and microstructure of the bioactive films were examined by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectrometer and electron probe microanalysis. The results showed that: (1) porous bioactive films with about 10μm were formed on titanium substrate by MAO; (2) phases of the thin films were hydroxyapatite, anatase and rutile; (3) elements of Ca, P, and Ti of films were identified by EDS.


2017 ◽  
Vol 23 (2) ◽  
pp. 135
Author(s):  
Shijing Lu ◽  
Kunxia Wei ◽  
Yan Wang ◽  
Jing Hu

<p class="AMSmaintext">Commercially pure titanium (CP-Ti) was subjected to thermal oxidation at different temperatures and times for determining the optimum oxidation conditions to obtain the optimum corrosion resistance. The phase constituents of the samples were determined by X-ray diffraction (XRD), the morphology of the surface was observed by SEM, and the corrosion behavior was investigated using immersion test by exposing the samples in HCl solutions with a concentration of 37%. The results showed that Rutile TiO<sub>2</sub> layer was formed on the surface of CP-Ti after thermal oxidation and the thickness of the TiO<sub>2</sub> layer increased with the treating temperature. Meanwhile, It was found that the optimum corrosion resistance to HCl was obtained while oxidizing at 700℃ for 330min~500min.</p>


2016 ◽  
Vol 254 ◽  
pp. 231-236 ◽  
Author(s):  
Ion Dragoş Uţu ◽  
Gabriela Marginean ◽  
Iosif Hulka ◽  
Viorel Aurel Şerban

Microstructure and wear properties of the Al2O3-13.wt% TiO2 thermally sprayed coatings before and after remelting were investigated in this study. The coatings were deposited on a pure titanium substrate using the atmospheric plasma spraying (APS) process. The as-sprayed coatings were electron beam (EB) modified in order to improve their compactness and bonding strength.The effect of EB remelting on the microstructure, phase constituents and wear properties was investigated using scanning electron microscopy (SEM), X-Ray diffraction technique and hardness measurements. The sliding wear behavior was tested using a pin on disk method.The results showed that the remelting process had a positive effect removing the lamellar defect of the as-sprayed coating and improving the compactness, hardness and wear behavior.


2013 ◽  
Vol 739 ◽  
pp. 196-200 ◽  
Author(s):  
T.M. Yue ◽  
K.J. Huang ◽  
H. Xie

A three-layer Ti-Si graded coating was fabricated on a commercially pure titanium substrate by laser cladding with Ti-5.8 at%Si, Ti-9.0 at%Si and Ti-13.5 at%Si mixed powders. The microstructure of the three layers comprised Ti-Si solid solutions (Ti) and the Ti5Si3 compound. As the silicon content was increased, the microstructure along the direction of deposition underwent a series of changes, including replacement of the (Ti) phase by the primary Ti5Si3 phase, and a change of the (Ti)/Ti5Si3 eutectic growth from lamellar to anomalous.


2012 ◽  
Vol 548 ◽  
pp. 174-178 ◽  
Author(s):  
Chong Yang Gao ◽  
Wei Ran Lu

By using a dislocation-based plastic constitutive model for hcp metals developed by us recently, the dynamic thermomechanical response of an important industrial material, commercially pure titanium (CP-Ti), was described at different temperatures and strain rates. The constitutive parameters of the material are determined by an efficient optimization method for a globally optimal solution. The model can well predict the dynamic response of CP-Ti by the comparison with experimental data and the Nemat-Nasser-Guo model.


Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


Sign in / Sign up

Export Citation Format

Share Document