Inspection and Model Experiment of a Damaged Arch Bridge

2007 ◽  
Vol 340-341 ◽  
pp. 223-228
Author(s):  
Ying Fang Fan ◽  
Zhi Qiang Hu ◽  
Jing Zhou

The structural behavior of an old six-span reinforced concrete arch bridge, which has been in service for about 40 years, is investigated. Field monitoring (inclusive of test of material property, static and dynamic test of the bridge) was conducted, static and dynamic responses of the bridge are obtained. Based on the primitive bridge, a scaled one-span bridge model was fabricated by organic-glasses. Both the static and dynamic tests were executed on the bridge model in the laboratory. Since the arch rib is the crucial member for the arch bridge, 7 notches were cut on both arch ribs of the bridge model to simulate different damages of the arch rib. Mechanical responses of the bridge with different damages on the arch ribs were achieved. FEM analyses were preformed on the bridge as well. Numerical results show good agreement with the experimental results.

2013 ◽  
Vol 313-314 ◽  
pp. 1046-1050
Author(s):  
Zill-e Hasnain Minhas ◽  
Sun Qin

Coefficients of dynamic viscosity for AL7050-T7451 at room temperature is extracted by creep and stress relaxation simulations in Ansys. An analogy has been established for both creep and stress relaxation, with simple Maxwell Model. The stress relaxation curve thus obtained is then used to generate the Prony series coefficients which are then used to run some dynamic analysis in Ansys to see the effect of loading at different frequencies on the value of η (i.e dynamic viscosity). This will be verified with the simple analytical dynamic formulation based on the Maxwell Model. A good agreement has been found for both quasi-static and dynamic tests with Maxwell model.


Ciencia Unemi ◽  
2018 ◽  
Vol 11 (28) ◽  
pp. 97-108
Author(s):  
Juan Carlos Rocha-Hoyos ◽  
Danilo Zambrano ◽  
Ángel Portilla ◽  
German Erazo ◽  
Guido Torres ◽  
...  

El presente artículo tuvo como objetivo analizar las emisiones del motor de encendido provocado por medio de protocolos internacionales para la evaluación de la variabilidad entre las pruebas estáticas y dinámicas. Las respectivas pruebas de laboratorio se realizaron a una altura sobre los 2810 msnm., en la ciudad de Quito-Ecuador. El vehículo experimentado fue un Nissan Sentra 1.6 L., sometido a pruebas estática (ralentí; 2500 rpm), y dinámica (ASM50/15, ASM25/25, IM 240). Se concluye que el sistema de inyección del vehículo trabaja de forma incorrecta en la prueba estática, debido a que el factor lambda fluctúa entre 1.18 y 1.79 lo que afecta la operación normal del motor por empobrecimiento de la mezcla; mientras que en el sistema de prueba dinámico se acerca a la condición del factor lambda 1 parámetro ideal para la formación de la mezcla estequiométrica. La estimación de los factores de emisión fue: CO de 0.58 gr/km, HC de 0.01006 gr/km y el NOx en 0.09 gr/km. AbstractThe objective of this article was to analyze the ignition engine emissions caused by international protocols for the evaluation of the variability between static and dynamic tests. The respective laboratory tests were performed at an altitude of 2810 m above sea level in the city of Quito-Ecuador. The vehicle experienced was a Nissan Sentra 1.6 L., subjected to tests static (idle; 2500 rpm), and dynamic (ASM 50/15, ASM 25/25, IM 240). It is concluded that the injection system of the vehicle works incorrectly in the static test, because the lambda factor fluctuates between 1.18 and 1.79 which affects the normal operation of the engine due to impoverishment of the mixture; while in the dynamic test system the lambda factor 1 condition is approached ideally for the formation of the stoichiometric mixture. The estimation of the emission factors was: CO of 0.58 g/km, HC of 0.01006 g/km and NOx in 0.09 g/km.


Author(s):  
Basavaraj Noolvi ◽  
Shanmukha Nagaraj ◽  
S. Raja

The presented research involves two types of Smart adaptive composite beams (SAC). The study was conducted on smart composite beams composed of LY5210 and EPOLAM 2063 resin systems respectively. The fabrication of composite beams involved embedding SMA wires in between layers of 0/90 woven glass fibre in the respective resin systems, followed by suitable curing and post curing cycles. Suitable mould was designed and manufactured to facilitate the required pre-straining of SMA wires. Both static and dynamic tests were done on the SAC specimens to study the behaviour of these SACs. Static and free vibration analyses were carried out using MSC Nastran and Hypermesh. There has been good agreement between the results of finite element analysis and the experimental results.


2012 ◽  
Vol 50 (No. 2) ◽  
pp. 54-60 ◽  
Author(s):  
J. Blahovec ◽  
V. Mareš ◽  
F. Paprštein

The paper is a continuation of the preceding research of bruising sensitivity applied to different pear varieties. This study was based on quasi-static fruit testing in compression between two plates. One part of the method is based on determining the hysteresis losses corresponding to the predetermined low level bruising. This paper contains an attempt to apply the hysteresis loss concept to dynamical impact tests, which are simpler and quicker then quasi-static ones. Moreover the impact tests are closer to the character of deformations that initiating the bruising process in real conditions. Nine pear varieties were tested quasi-statically by the method developed previously. The same varieties were tested also dynamically in a special pendulum with flat and round indentors. The results show that the dynamic test is less sensitive in determining the bruising susceptibility than the previous quasistatic one. Moreover the success of the dynamic test depends on the shape of the indentor. Acceptable results were obtained with a flat indentor in contrast to the round indentor. For the last modification of the indentor we obtained the results, from which it was practically impossible to determine the maximal value of the hysteresis losses at which no bruise spots were formed.


2020 ◽  
Vol 65 (1) ◽  
pp. 105-114
Author(s):  
Tiberiu Ștefan Mănescu

Railway tank wagons are widely used for the transportation of liquid cargo as petroleum products, acids, alcohol etc. During the last years only tank wagons with bogies were manufactured (four axles wagons). The prototype of each wagon’s series is tested according with international standards in purpose to validate the design (the project). This paper present the static and dynamic test performed at the body of a four axles tank wagon.


2018 ◽  
Vol 46 (3) ◽  
pp. 187-195 ◽  
Author(s):  
Diego Pomarè Montin ◽  
Ghada Ankawi ◽  
Anna Lorenzin ◽  
Mauro Neri ◽  
Carlotta Caprara ◽  
...  

Background/Aims: The use of adsorption cartridges for hemoperfusion (HP) is rapidly evolving. For these devices, the potential induced cytotoxicity is an important issue. The aim of this study was to investigate potential in vitro cytotoxic effects of different sorbent cartridges, HA130, HA230, HA330, HA380 (Jafron, China), on U937 monocytes. Methods: Monocytes were exposed to the sorbent material in static and dynamic manners. In static test, cell medium samples were collected after 24 h of incubation in the cartridges. In dynamic test, HP modality has been carried out and samples at 30, 60, 90, and 120 min were collected. Results: Compared to control samples, there was no evidence of increased necrosis or apoptosis in monocytes exposed to the cartridges both in the static and dynamic tests. Conclusion: Our in vitro testing suggests that HA cartridges carry an optimal level of biocompatibility and their use in HP is not associated with adverse reactions or signs of cytotoxicity.


A spherical indenter loaded statically or dynamically into contact with the surface of a brittle material produces a well-defined ring crack. This phenomenon, when interpreted by the Hertz theory of elastic contact, provides a convenient test for the strength of the material. If the elastic modulus of the indenter is different from that of the test material, e. g. a steel indenter in contact with a glass surface, frictional forces are brought into play at the interface which modify the Hertz distribution of contact stress. This effect has been examined both theo­retically and experimentally. An indenter which is more rigid than the test surface is shown to lead to an apparent increase in fracture strength of the material, a less rigid indenter has the opposite effect. Static and dynamic tests of plate glass showed a consistent increase in apparent fracture stress of about 50 % using spherical steel indenters compared with glass indenters. This increase agrees well with the influence of friction upon the Hertzian stress calculated theoretically. The average radius of the ring cracks produced by steel indenters was observed to be greater than that produced by glass indenters, an effect of friction also predicted by the theory. Secondary ring cracks of smaller radius have frequently been observed during unloading of a steel indenter. These were not found when a glass indenter was used and an explanation is suggested in terms of the frictional effect which arises from a difference in elasticity between the indenter and the test surface.


Author(s):  
Eiji Shirai ◽  
Tetsuya Zaitsu ◽  
Kazutoyo Ikeda ◽  
Toshiaki Yoshii ◽  
Masami Kondo ◽  
...  

At domestic PWR plants in Japan, one of the major key issues is earthquake-proof safety [1–3]. Recently, a design procedure using energy absorption, not conventional rigid design, was authorized according to revised review guidelines for aseismic design (JEAC4601). Therefore, we focused on the design technique that utilizes energy absorption effects to reduce the seismic responses of the piping system with U-Bolt, by the static and dynamic tests of simplified piping model supported by U-Bolt. The force-displacement characteristics and a fatigue diagram were obtained by the tests.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Helu Yu ◽  
Bin Wang ◽  
Yongle Li ◽  
Yankun Zhang ◽  
Wei Zhang

In order to cover the complexity of coding and extend the generality on the road vehicle-bridge iteration, a process to solve vehicle-bridge interaction considering varied vehicle speed based on a convenient combination of Matlab Simulink and ANSYS is presented. In this way, the road vehicle is modeled in state space and the corresponding motion equations are solved using Simulink. The finite element model for the bridge is established and solved using ANSYS. The so-called inter-history iteration method is adopted to realize the interaction between the vehicle model and the bridge model. Different from typical method of road vehicle-bridge interaction in the vertical direction, a detailed longitudinal force model is set up to take into account the effects of varied vehicle speed. In the force model, acceleration and braking of the road vehicle are treated differently according to their mechanical nature. In the case studies based on a simply supported beam, the dynamic performance of the road vehicle and the bridge under varied vehicle speeds is calculated and discussed. The vertical acceleration characteristics of the midpoint of beam under varied vehicle speed can be grouped into two periods. The first one is affected by the load transform between the wheels, and the other one depends on the speed amplitude. Sudden change of the vertical acceleration of the beam and the longitudinal reaction force are observed as the wheels move on or off the bridge, and the bridge performs different dynamic responses during acceleration and braking.


Sign in / Sign up

Export Citation Format

Share Document