Preparation of Macroporous Hydroxyapatite/Chitosan-Alginate Composite Scaffolds for Bone Implants

2007 ◽  
Vol 342-343 ◽  
pp. 217-220 ◽  
Author(s):  
Hyeong Ho Jin ◽  
Hyang Mi Lee ◽  
Ik Min Park ◽  
Hong Chae Park ◽  
Seog Young Yoon

Porous HAp/chitosan-alginate composite scaffolds were successfully synthesized by insitu co-precipitation method. During the preparation of HAp/chitosan-alginate composite scaffolds, the interaction between chitosan-alginate molecules would be reduced with increasing HAp content, with the resulting that the chitosan-alginate molecules were homogeneously dispersed in the composite scaffolds. The chitosan-alginate content was found to be almost consistent as initially added during the preparation. These results imply that chitosan-alginate was almost perfectly incorporated into the composites. It was found that the pore structure of the composite scaffolds with low HAp content was similar to chitosan-alginate scaffolds, and the morphology of uniform microstructure was unaffected by the presence of HAp. However, the pore diameter decreased with increasing the HAp content up to HAp content of 30 wt%, eventually the pore structure was collapsed and the composites scaffolds appeared to be agglomerated at higher HAp content.

2007 ◽  
Vol 544-545 ◽  
pp. 765-768 ◽  
Author(s):  
Hyeong Ho Jin ◽  
Won Ki Lee ◽  
Hong Chae Park ◽  
Seog Young Yoon

Various polymer-based scaffolds reinforced by the hydroxyapatite (HAp) for bone tissue engineering were successfully synthesized by in-situ co-precipitation method. The influence of HAp in composite scaffolds on the pore morphology, microstructure, and mechanical properties was investigated. The polymer-based scaffolds appeared to be macroporous and an interconnected open pore microstructure with pore size around 200 μm. The pore structure of the composite scaffolds was not much changed by the presence of HAp but the pore size of the composite scaffolds decreased with adding the HAp. The compressive modulus and yield strength of the polymer-based scaffolds improved by the presence of HAp.


2016 ◽  
Vol 69 (10) ◽  
pp. 1180
Author(s):  
Juhua Luo ◽  
Hongkai Mao ◽  
Xu Wang ◽  
Wei Yao

A TiO2-SiO2 mixed oxide was obtained by a co-precipitation method. MnOx-CeO2/TiO2-SiO2 were prepared by an impregnation method and their activity towards the selective catalytic reduction of NO with NH3 at low temperature were evaluated. Compared with pure TiO2, TiO2-SiO2 exhibited an evidently larger surface area and pore volume, and a smaller average pore diameter with narrow distribution. The NO conversion of the MnOx/TiO2-SiO2 catalyst could be improved by the addition of an appropriate amount of CeO2 in the temperature range of 100–180°C. MnOx-CeO2/TiO2-SiO2 with 10 wt-% CeO2 showed the highest activity with 96 % NO conversion at 180°C.


2015 ◽  
Vol 7 (2) ◽  
pp. 1393-1403
Author(s):  
Dr R.P VIJAYALAKSHMI ◽  
N. Manjula ◽  
S. Ramu ◽  
Amaranatha Reddy

Single crystalline nano-sized multiferroic BiFeO3 (BFO) powders were synthesized through simple chemical co-precipitation method using polyethylene glycol (PEG) as capping agent. We obtained pure phase BiFeO3 powder by controlling pHand calcination temperature. From X-ray diffraction studies the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure belonging to the space group of R3c. No secondary phases were detected. It indicates single phase structure. EDX spectra indicated the appearance of three elements Bi, Fe, O in 1:1:3. From the UV-Vis diffuse reflectance spectrum, the absorption cut-off wavelength of the BFO sample is around 558nm corresponding to the energy band gap of 2.2 eV. The size (60-70 nm) and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM).   Linear M−H behaviour and slight hysteresis at lower magnetic field is observed for BiFeO3 nanoparticles from Vibrating sample magnetometer studies. It indicates weak ferromagnetic behaviour at room temperature. From dielectric studies, the conductivity value is calculated from the relation s = L/RbA Sm-1 and it is around 7.2 x 10-9 S/m.


2020 ◽  
Vol 3 (1) ◽  
pp. 30-33
Author(s):  
Muthulakshmi M ◽  
Madhumitha G

Nanotechnology is a field of applied science focused on design, synthesis and characterization of nanomaterials. The nickel and magnesium have improved their applications in transparent electrodes and nano electronics. In addition, magnesium oxide has moisture resistance and high melting point properties. In the present work has been carried out in the development of green crystalline powder of nickel doped magnesium oxide nanoparticles by Co-precipitation method, from the mixture of nickel chloride and magnesium chloride with KOH as solvent. From the XRD results, crystalline size of the particle can be observed. Spherical structure of Ni doped MgO nanoparticles were indicated by SEM results and powdered composition of samples were obtained from FTIR. EDAX represents the peak composition of the nanoparticle. The above analytical techniques have confirmed that the Ni doped MgO nanoparticles obtained from the mixture of NiCl2 and MgCl2.


2017 ◽  
Vol 68 (1) ◽  
pp. 168-171 ◽  
Author(s):  
Letitia Doina Duceac ◽  
Cristina Elena Dobre ◽  
Ioana Pavaleanu ◽  
Gabriela Calin ◽  
Simona Nichitus ◽  
...  

Preventing diseases is deemed to be the major goal of our century especially when an excessive fluoride in drinking water can cause dental fluorosis, bone stiffness, rheumatism and skeletal fluorosis. Fluoride uptake from groundwater implies a worldwide multidisciplinary effort in order to develop renewable, cheap, human friendly materials. Among other materials, hydrotalcites could be good candidates for an efficient fluoride removal from water due to their adsorption, anion exchange and reconstruction properties. These nanostructured materials were synthesized using co-precipitation method in controlled conditions. Presence of anions in the interlayer structure and morphological aspects were performed by FTIR and SEM techniques. Thermal treatment of hydrotalcites showed good adsorption capacities for water defluoridation mostly due to their tendency to restore the original structure.


2007 ◽  
Vol 433 (1-2) ◽  
pp. 328-331 ◽  
Author(s):  
Zhi-Hui Chen ◽  
Yun Yang ◽  
Zhang-Gui Hu ◽  
Jiang-Tao Li ◽  
Shu-Li He

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 832
Author(s):  
Edna X. Figueroa-Rosales ◽  
Javier Martínez-Juárez ◽  
Esmeralda García-Díaz ◽  
Daniel Hernández-Cruz ◽  
Sergio A. Sabinas-Hernández ◽  
...  

Hydroxyapatite (HAp) and hydroxyapatite/multi-walled carbon nanotube (MWCNT) composites were obtained by the co-precipitation method, followed by ultrasound-assisted and microwave radiation and thermal treatment at 250 °C. X-ray diffraction (XRD) confirmed the presence of a hexagonal phase in all the samples, while Fourier-transform infrared (FTIR) spectroscopy elucidated the interaction between HAp and MWCNTs. The photoluminescent technique revealed that HAp and the composite with non-functionalized MWCNTs present a blue luminescence, while the composite with functionalized MWCNTs, under UV-vis radiation shows an intense white emission. These findings allowed presentation of a proposal for the use of HAp and HAp with functionalized MWCNTs as potential materials for optoelectronic and medical applications.


Sign in / Sign up

Export Citation Format

Share Document