Characteristics of High Frequency Peening Methods and their Effects on the Fatigue Strength of Welded Details

2007 ◽  
Vol 348-349 ◽  
pp. 429-432
Author(s):  
Imke Weich ◽  
Thomas Ummenhofer

Research has been initiated on the effects of high frequency peening methods on the fatigue strength. These methods combine an improvement of weld toe profile with an initiation of compressive residual stresses and surface hardening. The effects of two techniques, High Frequency Impact Treatment (HiFIT) and Ultrasonic Impact Treatemnt (UIT) are compared. Laser measurements of the weld seam prove that both methods increase the overall weld toe radii. Further, residual stress measurements verify the introduction of compressive residual stresses at least up to a depth of 1 mm. The values meet the yield strength combined with an increase of the surface hardness. These material mechanical effects cause an increased crack resistance. Crack detection methods prove that the material mechanical effects yield to a retarded crack initiation. Experimental results show that these effects lead to a significant increase of the fatigue strength and reduced slopes of the SN-curves.

2008 ◽  
Vol 580-582 ◽  
pp. 97-100
Author(s):  
Seung Ho Han ◽  
Jeong Woo Han ◽  
Yong Yun Nam

Mechanical post treatments for welded structures have been applied in various industrial fields and, in most cases, have been found to cause substantial increase in their fatigue strength. These methods, generally, consist of the modification of weld toe geometry and the introduction of compressive residual stresses. In hammer peening, the weld profile is modified due to removal or reduction of minute crack-like flaws; compressive residual stresses are also induced by repeated hammering of the weld toe region with blunt-nosed chisel. In this study, a hammer peening procedure, using commercial pneumatic chipping hammer, was developed; a quantitative measure of fatigue strength improvement was performed. The fatigue life of hammer-peened specimen was prolonged by approximately 10 times in S=240MPa, and was doubled for the as-welded specimen.


Author(s):  
B. L. Josefson ◽  
J. Alm ◽  
J. M. J. McDill

The fatigue life of welded joints can be improved by modifying the weld toe geometry or by inducing beneficial compressive residual stresses in the weld. However, in the second case, the induced compressive residual stresses may relax when the welded joint is subjected to cyclic loading containing high tensile or compressive stress peaks. The stability of induced compressive stresses is investigated for a longitudinal gusset made of a S355 steel. Two methods are considered; either carrying out a high frequency mechanical impact (HFMI) treatment after welding or alternatively using low transformation temperature (LTT) electrodes during welding. The specimen is then subjected to a cyclic loading case with one cycle with a tensile peak (with magnitude reaching the local yield stress level) followed by cycles with constant amplitude. A sequential finite element analysis (FEA) is performed thereby preserving the history of the elasto-plastic behavior. Both the welding process and the HFMI treatment are simulated using simplified approaches, i.e., the welding process is simulated by applying a simplified thermal cycle while the HFMI treatment is simulated by a quasi-static contact analysis. It is shown that using the simplified approaches to modelling both the welding process and HFMI treatment gives results that correlate qualitatively well with the experimental and FEA data available in the literature. Thus, for comparison purposes, simplified models may be sufficient. Both the use of the HFMI treatment and LTT electrodes give approximately the same compressive stress at the weld toe but the extent of the compressive stress zone is deeper for HFMI case. During cyclic loading it is shown that the beneficial effect of both methods will be substantially reduced if the test specimen is subjected to unexpected peak loads. For the chosen load sequence, with the same maximum local stress at the weld toe, the differences in stress curves of the HFMI-treated specimen and that with LTT electrodes remain. While the LTT electrode gives the lowest (compressive) stress right at the well toe, it is shown that the overall effect of the HFMI treatment is more beneficial.


1970 ◽  
Vol 12 (6) ◽  
pp. 381-390
Author(s):  
T. R. Gurney

Using results obtained in work on fatigue crack propagation in unwelded sheet specimens, an analysis has been made of fatigue test results for specimens with longitudinal non-load-carrying fillet welds tested in the as-welded and stress relieved conditions and also after treatment by local compression and by spot heating. It is shown that, by this means, it is possible to provide a quantitative explanation of the effect of residual stresses and applied stress ratio on fatigue strength, since all the results can be normalized on the basis of an effective stress range. In the course of the work it has been shown that the gross stress concentration factor for this type of joint is approximately 2·57. It has also again been demonstrated that the beneficial effect of spot heating on fatigue strength is a direct result of induced compressive residual stresses.


2018 ◽  
Vol 14 (4) ◽  
pp. 133-142
Author(s):  
Zeyad D. Kadhim ◽  
Mohammed Abdulraoof Abdulrazzaq ◽  
Wassan Suheil Hussain

Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue test showed that improvement in fatigue limit, where the highest fatigue limit was obtained at (1mm feed, 1200rpm speed) in burnishing process which was (169 Mpa). The hardness results, showed increasing feed and speed values lead to increasing the hardness. The burnishing process reduces surface roughness by producing accurate and better surface finish. The best surface fineness of metal at (1mm feed and 1200 rpm speed) was 0.11 μm.


Author(s):  
Jacob Kleiman ◽  
Yuri Kudryavtsev ◽  
Alexander Lugovskoy

A new ultrasonic peening instrument was developed for underwater treatment of welds and welded structures. The Ultrasonic Peening (UP) established itself as a promising process for fatigue life improvement of welded elements and structures. The beneficial effect of UP is obtained through relieving of harmful tensile residual stresses and introducing of compressive residual stresses into surface layers of materials, and through decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the materials. In the design of the underwater UP instrument specially selected anti-corrosion materials are used. The underwater UP instrument can be used for treatment of welds at depths up to 30 meters or, if required, with certain modifications, even deeper. Acoustic pump principle is used in the originally developed system for water cooling of the transducer. The developed UP system allows for improvement treatments at four different power levels and is using replaceable working heads that come in various configurations with variable numbers of pins, depending on the application.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Mansoor Khurshid ◽  
Zuheir Barsoum ◽  
Gary Marquis

Residual stress state plays an important role in the fatigue life of welded structures. The effect can be beneficial or detrimental, depending on the nature of residual stresses. High frequency mechanical impact (HFMI) treatment is a postweld fatigue improvement technique for welded joints. In this research work the behavior of compressive residual stresses induced in welded joints in high strength steels (HSS) by HFMI treatment has been investigated. Longitudinal nonload carrying attachments in HSS are tested with constant amplitude (CA) and variable amplitude (VA) fatigue loading. Stress concentration factors have been calculated using finite element analysis (FEA). Residual stresses have been measured at different cycles during fatigue testing using X-ray diffraction technique. It is observed that the induced residual stresses are quite stable with some relaxation in CA and VA loading. The overloads in VA loading seem to be more detrimental. Relaxation of residual stresses is more obvious in VA tests.


Author(s):  
Jacob Kleiman ◽  
Yuri Kudryavtsev ◽  
Alexander Lugovskoy

The Ultrasonic Peening (UP) is one of new and promising processes for fatigue life improvement of welded elements and structures. During the different stages of its development the UP process was also known as ultrasonic treatment (UT), ultrasonic impact treatment (UIT), ultrasonic impact peening (UIP). The beneficial effect of UP is achieved mainly by relieving of harmful tensile residual stresses and introducing of compressive residual stresses into surface layers of material, decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. The results of fatigue testing of welded elements made of regular and high strength steels in as-welded condition and after application of UP will be presented. The yield strength of considered materials varied from 250–350 MPa to 700–1000 MPa. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increased fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used. It allows using to a greater degree the advantages of the HSS in welded elements, subjected to fatigue loading.


Sign in / Sign up

Export Citation Format

Share Document