Numerical Simulation of 3-D Failure Process of Reinforced Concrete Specimen under Uniaxial Tension

2007 ◽  
Vol 353-358 ◽  
pp. 949-952 ◽  
Author(s):  
Juan Xia Zhang ◽  
Chun An Tang ◽  
Xiu Yan Zhou ◽  
Xing Jie Hui ◽  
Zheng Zhao Liang ◽  
...  

The periodically distributed fracture spacing phenomenon exists in the failure process of the reinforced concrete prism under uniaxial tension. In this paper, A numerical code RFPA3D (3D Realistic Failure Process Analysis) is used to simulate the three-dimensional failure process of plain concrete prism specimen and reinforced concrete prism specimen under uniaxial tension. The reinforced concrete is represented by a set of elements with same size and different mechanical properties. They are uniform cubic elements and their mechanical properties, including elastic modulus and peak strength, are distributed through the specimens according to a certain statistical distribution. The elastic modulus and other mechanical properties are weakened gradually when the stresses in the elements meet the specific failure criterion. The displacement-controlled loading scheme is used to simulate the complete failure process of reinforced concrete. The analyses focus on the failure mechanisms of the concrete and reinforcement. The complete process of the fracture for the plain concrete prism and the fracture initiation, infilling and saturation of the reinforced concrete prism is reproduced. It agrees well with the theoretical analysis. Through 3D numerical tests for the specimen, it can be investigated the interaction between the reinforcement and concrete mechanical properties in meso-level and the numerical code is proved to be an effective way to help thoroughly understand the rule of the reinforcement and concrete and also help the design of the structural concrete components and systems.

2010 ◽  
Vol 177 ◽  
pp. 549-553
Author(s):  
Wei Hong Li ◽  
Feng Hai Ma

In this paper, MFPA (Material Failure Process Analysis) is utilized to simulate the failure process of reinforced concrete member under the situation of four-point bending. The influence which protective layer thickness does on the mechanical properties of reinforced concrete beam is mainly studied. Results indicate that the increase of the protective layer thickness will reduce the sectional effective height of the beam, which decrease the bearing capacity of the member either. Therefore, choosing the protective layer thickness properly will make the member having preferable properties. In this study, what also be found is that generally it is more reasonable when protective layer is within 90 mm. However, it is necessary for the protective layer thickness to be confirmed by relevant specifications and standards on the premise above.


2014 ◽  
Vol 536-537 ◽  
pp. 1435-1438
Author(s):  
Juan Xia Zhang ◽  
Zhong Hui Chen ◽  
Xian Zhang Guo ◽  
Chun An Tang ◽  
Zheng Zhao Liang

The periodically distributed fracture spacing phenomenon exists in the failure process of the pure bending region of the reinforced concrete beam. A numerical code RFPA3D (3D Realistic Failure Process Analysis) is used to investigate the crack distribution rule of reinforced concrete beam with different shear span ratios. The displacement-controlled loading scheme was used to simulate the complete failure process of reinforced concrete beam. The numerical simulation results were agreed well with the theoretical analysis and experiment observations. The study is focused on the failure process of the reinforced concrete beam and the effects of the shear span ratio on the failure mode.


2004 ◽  
Vol 261-263 ◽  
pp. 1517-1522 ◽  
Author(s):  
Wan Cheng Zhu ◽  
K.T. Chau ◽  
Chun An Tang

Brazilian test is a standardized test for measuring indirect tensile strength of rock and concrete disc (or cylinder). Similar test called indirect tensile test has also been used for other geomaterials. Although splitting of the disc into two halves is the expected failure mode, other rupture modes had also been observed. More importantly, the splitting tensile strength of rock can vary significantly with the specimen geometry and loading condition. In this study, a numerical code called RFPA2D (abbreviated from Rock Failure Process Analysis) is used to simulate the failure process of disc and ring specimens subject to Brazilian test. The failure patterns and splitting tensile strengths of specimens with different size and loading-strip-width are simulated and compared with existing experimental results. In addition, two distinct failure patterns observed in ring tests have been simulated using RFPA2D and thus this verifies the applicability of RFPA2D in simulating rock failure process under static loads.


2006 ◽  
Vol 324-325 ◽  
pp. 947-950 ◽  
Author(s):  
Da Guo Wang ◽  
Ju Ying Yang ◽  
Li Chong Li ◽  
Wei Jiang

In this paper, a numerical code, Realistic Failure Process Analysis code (RFPA), was used to perform a microscopic analysis of a crack in a fiber-reinforced ceramic, when the crack length is the same order of magnitude as the fiber spacing. The numerical results performed in the paper shown the failure process of fiber-reinforced ceramic subjected to tension loading, which indicate that the reinforcing fibers in a ceramic composite have a significant effect in inhibiting crack propagation even during the stages of the development of crack. Moreover, the fiber evidently increased the load-carrying capacity.


2011 ◽  
Vol 704-705 ◽  
pp. 817-822
Author(s):  
Juan Xia Zhang ◽  
Xian Zhang Guo ◽  
Zheng Zhao Liang ◽  
Ya Fang Zhang

The goal of the present work is to investigate the influence of concrete on failure mode and stress distribution of the reinforced concrete specimens under axial tension by using a numerical test code named Realistic Failure Process Analysis. It can be found that, the periodically distributed fracture spacing phenomenon and tension stiffening phenomenon exist in the failure process of the reinforced concrete structure. Besides, the effect of concrete characteristics on the mechanical behavior and crack spacing of reinforced concrete was also studied in three samples with different concrete strength. The concrete strength value is considered to be an important factor not only to significantly influence the average crack spacing but also to influence the initial peak load of the specimen. In addition, the average fracture spacing is increased and the initial peak load is also increase with the increasing of the concrete strength value, but the mechanical capacities of the concrete has little influence on the ultimate load capacities of the specimen. Keywords: Numerical test; reinforcement concrete, crack distribution, 3D


2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.


2007 ◽  
Vol 353-358 ◽  
pp. 993-996
Author(s):  
Tian Hui Ma ◽  
Ju Ying Yang ◽  
Zheng Zhao Liang ◽  
Yong Bin Zhang ◽  
Tao Xu

Fracture formation on surfaces of bi-layered materials is studied numerically. A simplified two-layered materials model like growing tree trunk is present. This work is focused on patterns of fractures and fracture saturation. We consider the formation of crack pattern in bark as an example of pattern formation due to expansion of one material layer with respect to another. As a result of this expansion, the bark stretches until it reaches its limit of deformation and cracks. A novel numerical code, 3D Realistic Failure Process Analysis code (abbreviated as RFPA3D) is used to obtain numerical solutions. In this numerical code, the heterogeneity of materials is taken into account by assigning different properties to the individual elements according to statistical distribution function. Elastic-brittle constitutive relation with residual strength for elements and a Mohr-Coulomb criterion with a tensile cut-off are adopted so that the elements may fail either in shear or in tension. The discontinuity feature of the initiated crack is automatically induced by using degraded stiffness approach when the tensile strain of the failed elements reaching a certain value. The different patterns are obtained by varying simulation parameters, the thickness of the material layer. Numerical simulation clearly demonstrates that the stress state transition precludes further infilling of fractures and the fracture spacing reaches constant state,i.e. the socalled fracture saturation. It also indicates that RFPA code is a viable tool for modeling fracture formation and studying fracture patterns.


2012 ◽  
Vol 446-449 ◽  
pp. 2929-2933
Author(s):  
Tian Hui Ma ◽  
Chun An Tang ◽  
Lian Chong Li ◽  
Zheng Zhao Liang ◽  
Yong Bin Zhang

Parallel fracture formation on surfaces of bi-layered columnar materials like growing tree trunk has been previously studied numerically. In this paper, numerical results of a continuous transition from parallel to polygonal fracture patterns with principal stress ratio provides the clear convincing theoretical explanation for fracture spacing. We perform three-dimensional simulations of fracture growth in a bi-layered columnar model with an embedded heterogeneous layer under inner radial expansion and terminal tension by finite element approach. As a result of this expansion, the bark stretches until it reaches its limit of deformation and cracks. A novel numerical code, 3D Realistic Failure Process Analysis code (abbreviated as RFPA3D) is used to obtain numerical solutions. In this numerical code, the heterogeneity of materials is taken into account by assigning different properties to the individual elements according to statistical distribution function. Elastic-brittle constitutive relation with residual strength for elements and a Mohr-Coulomb criterion with a tensile cut-off are adopted so that the elements may fail either in shear or in tension. The discontinuity feature of the initiated crack is automatically induced by using degraded stiffness approach when the tensile strain of the failed elements reaching a certain value. Numerical results of a continuous transition from parallel to polygonal fracture patterns with principal stress ratio are obtained by varying simulation parameters, the thickness of the material layer. We find that, except for further opening of existing fractures after they are well-developed (saturation), new fractures may also initiate and propagate along the interface between layers, which may serve as another mechanism to accommodate additional strain for fracture saturated layers.


2011 ◽  
Vol 50-51 ◽  
pp. 568-572 ◽  
Author(s):  
Nu Wen Xu ◽  
Chu Nan Tang ◽  
Chun Sha ◽  
Ru Lin Zhang

This research applied a numerical code, RFPA2D (Realistic Failure Process Analysis) to evaluate the stability and investigate the failure mode of the high rock slope during excavations based on Strength Reduction Method (SRM). The corresponding shapes and positions of the potential slip surfaces are rationally simulated in different stages, and the related safety coefficients are obtained, which agrees well with the allowable minimum safety factors of the slope. The numerical results show that the safety coefficient drops from 1.25 at the natural state to 1.09 after excavation, and then increases to 1.35 after slope reinforcement. Moreover, the potential slip surface of the left bank moves into deep rock mass after taking support measures, which demonstrates the reinforcement is reasonable and efficient. The study shows that cracks and faults will cause crucial influences on the slope stability, and RFPA2D is a good tool to directly display the potential slip surface of the slope, which will offer valuable guidance for bolt support.


Sign in / Sign up

Export Citation Format

Share Document