Numerical Simulation of 3-D Failure Process of Reinforced Concrete Specimen under Uniaxial Tension

Author(s):  
Juan Xia Zhang ◽  
Chun An Tang ◽  
Xiu Yan Zhou ◽  
Xing Jie Hui ◽  
Zheng Zhao Liang ◽  
...  
2007 ◽  
Vol 353-358 ◽  
pp. 949-952 ◽  
Author(s):  
Juan Xia Zhang ◽  
Chun An Tang ◽  
Xiu Yan Zhou ◽  
Xing Jie Hui ◽  
Zheng Zhao Liang ◽  
...  

The periodically distributed fracture spacing phenomenon exists in the failure process of the reinforced concrete prism under uniaxial tension. In this paper, A numerical code RFPA3D (3D Realistic Failure Process Analysis) is used to simulate the three-dimensional failure process of plain concrete prism specimen and reinforced concrete prism specimen under uniaxial tension. The reinforced concrete is represented by a set of elements with same size and different mechanical properties. They are uniform cubic elements and their mechanical properties, including elastic modulus and peak strength, are distributed through the specimens according to a certain statistical distribution. The elastic modulus and other mechanical properties are weakened gradually when the stresses in the elements meet the specific failure criterion. The displacement-controlled loading scheme is used to simulate the complete failure process of reinforced concrete. The analyses focus on the failure mechanisms of the concrete and reinforcement. The complete process of the fracture for the plain concrete prism and the fracture initiation, infilling and saturation of the reinforced concrete prism is reproduced. It agrees well with the theoretical analysis. Through 3D numerical tests for the specimen, it can be investigated the interaction between the reinforcement and concrete mechanical properties in meso-level and the numerical code is proved to be an effective way to help thoroughly understand the rule of the reinforcement and concrete and also help the design of the structural concrete components and systems.


2005 ◽  
Vol 83 (31-32) ◽  
pp. 2609-2631 ◽  
Author(s):  
X.S. Tang ◽  
J.R. Zhang ◽  
C.X. Li ◽  
F.H. Xu ◽  
J. Pan

2011 ◽  
Vol 117-119 ◽  
pp. 53-57
Author(s):  
Juan Xia Zhang ◽  
Xian Zhang Guo ◽  
Sheng Guang Zhuo ◽  
Chun An Tang

A numerical test code named RFPA (Realistic Failure Process Analysis) was used to investigate the stress filed transformation process of the reinforced concrete specimen under uniaxial tensile loading. The periodically distributed fracture spacing phenomenon exists in the reinforced concrete structure and the concrete cover thickness was an important factor influence the average crack spacing and crack number. The numerical simulation results show that the stress fields on the concrete between the two adjacent cracks go through a variation process from tensile stress to compressive stress with the increasing of the concrete cover thickness value. It is clear that the stress distribution and fracture spacing were related to the concrete cover thickness under the condition that the materials characteristics were certain (such as concrete and reinforcement materials).In addition, if there was a new crack produced, the location was sure in the middle of the two adjacent cracks since the maximum stress occurred in the middle of the two adjacent cracks. So, it indicates that the concrete cover thickness can influence the average fracture spacing and the crack number in the reinforced concrete prism specimen.


2014 ◽  
Vol 536-537 ◽  
pp. 1435-1438
Author(s):  
Juan Xia Zhang ◽  
Zhong Hui Chen ◽  
Xian Zhang Guo ◽  
Chun An Tang ◽  
Zheng Zhao Liang

The periodically distributed fracture spacing phenomenon exists in the failure process of the pure bending region of the reinforced concrete beam. A numerical code RFPA3D (3D Realistic Failure Process Analysis) is used to investigate the crack distribution rule of reinforced concrete beam with different shear span ratios. The displacement-controlled loading scheme was used to simulate the complete failure process of reinforced concrete beam. The numerical simulation results were agreed well with the theoretical analysis and experiment observations. The study is focused on the failure process of the reinforced concrete beam and the effects of the shear span ratio on the failure mode.


2021 ◽  
Vol 11 (3) ◽  
pp. 1112
Author(s):  
Nikita Belyakov ◽  
Olga Smirnova ◽  
Aleksandr Alekseev ◽  
Hongbo Tan

The problem of damage accumulation in fiber-reinforced concrete to structures supporting underground workings and tunnel linings against dynamic loading is insufficiently studied. The mechanical properties were determined and the mechanism of destruction of fiber-reinforced concrete with different reinforcement parameters is described. The parameters of the Concrete Damaged Plasticity model for fiber-reinforced concrete at different reinforcement properties are based on the results of lab experiments. Numerical simulation of the composite concrete was performed in the Simulia Abaqus software package (Dassault Systemes, Vélizy-Villacoublay, France). Modeling of tunnel lining based on fiber-reinforced concrete was performed under seismic loading.


2011 ◽  
Vol 378-379 ◽  
pp. 15-18
Author(s):  
Yong Bin Zhang ◽  
Zheng Zhao Liang ◽  
Shi Bin Tang ◽  
Jing Hui Jia

In this paper, a ring shaped numerical specimen is used to studying the failure process in brittle materials. The ring specimen is subjected to a compressive diametral load and contains two angled central cracks. Numerical modeling in this study is performed. It is shown that the obtained numerical results are in a very good agreement with the experiments. Effect of the crack orientation angle on the failure modes and loading-displace responses is discussed. In the range of 0°~40°, the fracture paths are curvilinear forms starting from the tip of pre-existing cracks and grow towards the loading points. For the crack orientation angle 90°, vertical fractures will split the specimen and the horizontal cracks do not influence the fracture process.


Sign in / Sign up

Export Citation Format

Share Document