Nanoindentation Size Effect of KDP Crystal by Instrumented Indentation Testing

2007 ◽  
Vol 364-366 ◽  
pp. 188-192 ◽  
Author(s):  
H.X. Wang ◽  
Jing He Wang ◽  
Shen Dong

Indentation tests and single-point scratch tests are probably the simplest methods of measuring the elastic, plastic and fracture behavior of brittle materials. In this paper, the nearsurface mechanical properties of KDP single crystal have been investigated including the elasticity like Young’s modulus E, and the plasticity like the hardness H. These material properties can be used to predict the material responses in optical manufacturing operations. Hardness and elastic modulus on different crystal plane of KDP single crystal have been examined under different loads by nanoindentation test, and the influence of the indentation load on hardness and elastic modulus have been also analyzed systematically. The results show the nanoindentation size effect, that is, the hardness and elastic modulus increase as the indentation load decreases. The hardness and elastic modulus have strong anisotropy in the different crystallographic orientation of the same crystal plane.

2014 ◽  
Vol 85 (5) ◽  
pp. 777-783 ◽  
Author(s):  
Dayanne Lopes da Silva ◽  
Emanuel Santos ◽  
Sérgio de Souza Camargo ◽  
Antônio Carlos de Oliveira Ruellas

ABSTRACT Objective:  To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. Materials and Methods:  The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. Results:  The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm−1. The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. Conclusion:  The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.


2004 ◽  
Vol 19 (1) ◽  
pp. 208-217 ◽  
Author(s):  
Yueguang Wei ◽  
Xuezheng Wang ◽  
Manhong Zhao

Nanoindentation test at scale of hundreds of nanometers has shown that measured hardness increases strongly with decreasing indent depth, which is frequently referred to as the size effect. Usually, the size effect is displayed in the hardness-depth curves. In this study, the size effect is characterized in both the load–displacement curves and the hardness–depth curves. The experimental measurements were performed for single-crystal copper specimen and for surface-nanocrystallized Al-alloy specimen. Moreover, the size effect was characterized using the dislocation density theory. To investigate effects of some environmental factors, such as the effect of surface roughness and the effect of indenter tip curvature, the specimen surface profile and the indentation imprint profile for single-crystal copper specimen were scanned and measured using the atomic force microscopy technique. Furthermore, the size effect was characterized and analyzed when the effect of the specimen surface roughness was considered.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4579
Author(s):  
Sathwik S. Kasyap ◽  
Kostas Senetakis

In materials science and engineering, a significant amount of research has been carried out using indentation techniques in order to characterize the mechanical properties and microstructure of a broad range of natural and engineered materials. However, there are many unresearched or partly researched areas, such as, for example, the investigation of the shape of the indentation load–displacement curve, the associated mechanism in porous materials with clastic texture, and the influence of the texture on the constitutive behavior of the materials. In the present study, nanoindentation is employed in the analysis of the mechanical behavior of a benchmark material composed of plaster of Paris, which represents a brand of highly porous-clastic materials with a complex structure; such materials may find many applications in medicine, production industry, and energy sectors. The focus of the study is directed at the examination of the influence of the porous structure on the load–displacement response in loading and unloading phases based on nanoindentation experiments, as well as the variation with repeating the indentation in already indented locations. Events such as pop-in in the loading phase and bowing out and elbowing in the unloading phase of a given nanoindentation test are studied. Modulus, hardness, and the elastic stiffness values were additionally examined. The repeated indentation tests provided validations of various mechanisms in the loading and unloading phases of the indentation tests. The results from this study provide some fundamental insights into the interpretation of the nanoindentation behavior and the viscoelastic nature of porous-clastic materials. Some insights on the influence of indentation spacing to depth ratio were also obtained, providing scope for further studies.


2006 ◽  
Vol 21 (5) ◽  
pp. 1237-1242 ◽  
Author(s):  
Kalpana S. Katti ◽  
Bedabibhas Mohanty ◽  
Dinesh R. Katti

Nacre, the inner iridescent layer of seashells is a model biomimetic system composed of 95% of inorganic (aragonite) phase and 5% of organic phase. Nacre exhibits an interlocked layered “brick and mortar” structure where the bricks are made up of aragonitic calcium carbonate and mortar is an organic phase. Here, we report the role of indentation load and penetration depth on measurement of nanomechanical properties of nacre. A range of loads from 10 μN to 10,000 μN were applied to obtain the response from different depths of nacre. The values of hardness and elastic modulus decrease with increasing load (i.e., increase in penetration depth). The variation in these values is significant at lower loads and decreases with increase in indentation load. From our results, it appears that the nanoindentation tests done at lower loads are highly influenced by micro and nanostructure in nacre. The indentation experiments performed at low loads indicate an elastic modulus of about 15 GPa for the organic phase. The low load, low penetration experiments appear to be better indicators of nanomechanical behavior. Also, we have observed a step-like behavior in the load-displacement curves at high load indentations on nacre. These features are attributed to the organic layer between the aragonite platelets. The indentation tests with penetration depths more than ∼250-300 nm often disrupt the organic layer and the behavior is not recovered in the unloading part of the curve. The microarchitecture and the composition of nacre contribute to the decrease in hardness values with increasing depth along with the indentation size effects.


Author(s):  
Cemal Basaran ◽  
Jianbin Jiang

Young’s modulus (E) values published in literature for the eutectic Pb37/Sn63 and near eutectic Pb40/Sn60 solder alloy vary significantly. One reason for this discrepancy is different testing methods for highly rate sensitive heterogeneous materials, like Pb/Sn alloys, yield different results. In this paper, we study different procedures used to obtain the elastic modulus; analytically, by single crystal elasticity and experimentally by ultrasonic testing and Nano indentation. We compare these procedures and propose a procedure for elastic modulus determination. The deformation kinetics of the Pb/Sn solder alloys is discussed at the grain size level.


2000 ◽  
Vol 649 ◽  
Author(s):  
G. Feng ◽  
A.H.W. Ngan

ABSTRACTDuring the unloading segment of nanoindentation, time dependent displacement (TDD) accompanies elastic deformation. Consequently the modulus calculated by the Oliver-Pharr scheme can be overestimated. In this paper we present evidences for the influence of the measured modulus by TDD. A modification method is also presented to correct for the effects of TDD by extrapolating the TDD law in the holding process to the beginning of the unloading process. Using this method, the appropriate holding time and unloading rate can be estimated for nanoindentation test to minimise the effects of TDD. The elastic moduli of three materials computed by the modification method are compared with the results without considering the TDD effects.


2021 ◽  
Author(s):  
Amir H. Hakimioun ◽  
Elisabeth M. Dietze ◽  
Bart D. Vandegehuchte ◽  
Daniel Curulla-Ferre ◽  
Lennart Joos ◽  
...  

AbstractThis study evaluates the finite size effect on the oxygen adsorption energy of coinage metal (Cu, Ag and Au) cuboctahedral nanoparticles in the size range of 13 to 1415 atoms (0.7–3.5 nm in diameter). Trends in particle size effects are well described with single point calculations, in which the metal atoms are frozen in their bulk position and the oxygen atom is added in a location determined from periodic surface calculations. This is shown explicitly for Cu nanoparticles, for which full geometry optimization only leads to a constant offset between relaxed and unrelaxed adsorption energies that is independent of particle size. With increasing cluster size, the adsorption energy converges systematically to the limit of the (211) extended surface. The 55-atomic cluster is an outlier for all of the coinage metals and all three materials show similar behavior with respect to particle size. Graphic Abstract


2001 ◽  
Vol 16 (6) ◽  
pp. 1660-1667 ◽  
Author(s):  
L. Riester ◽  
T. J. Bell ◽  
A. C. Fischer-Cripps

The present work shows how data obtained in a depth-sensing indentation test using a Knoop indenter may be analyzed to provide elastic modulus and hardness of the specimen material. The method takes into account the elastic recovery along the direction of the short axis of the residual impression as the indenter is removed. If elastic recovery is not accounted for, the elastic modulus and hardness are overestimated by an amount that depends on the ratio of E/H of the specimen material. The new method of analysis expresses the elastic recovery of the short diagonal of the residual impression into an equivalent face angle for one side of the Knoop indenter. Conventional methods of analysis using this corrected angle provide results for modulus and hardness that are consistent with those obtained with other types of indenters.


Sign in / Sign up

Export Citation Format

Share Document