Synthesis and Characterization of Siloxane-Polyurethane Hybrid Materials

2008 ◽  
Vol 396-398 ◽  
pp. 481-484
Author(s):  
Rodrigo Jiménez-Gallegos ◽  
L. Téllez-Jurado ◽  
Luis M. Rodríguez-Lorenzo ◽  
Julio San Román

This paper focuses on the preparation of siloxane-polyurethane hybrid materials using a sol-gel method. The global aim of the project is to tailor mechanical properties, degradability rate, bioactivity and biocompatibility to design scaffolds for musculoskeletal applications. A series of seven hybrid materials were synthesized with varying the proportion of polydimethylsiloxane (PDMS), and Polyurethane (PU). The organic part ratios (by weight) employed were (% PDMS:% PU) 30:0, 35:5, 20:10, 15:15, 10:20, 5:25, and 0:30. The organic part was reacted with constant 70 % TEOS to obtain the hybrid materials. A sol-gel process was selected for the synthesis of the hybrids. The characterization of materials was carried out by the fourier-infrared spectroscopy (FT-IR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electronic microscopy (SEM) and proton nuclear magnetic resonance (1H-NMR) techniques in order to analyze the structure, microstructure and chemical composition of the hybrid materials. Gelification time depends on the proportion of PU used. When no PU is employed, the gel time is 8 hours but it rises up to 18 days for 30 % of polyurethane. Materials range from opaque to translucent but with a greater fragility for greater amounts of polyurethane. No differences in the bonding of materials could be appreciated.

2017 ◽  
Vol 748 ◽  
pp. 413-417
Author(s):  
Chun Yu Long ◽  
Fang Fang Peng ◽  
Min Min Jin ◽  
Pei Song Tang ◽  
Hai Feng Chen

Using Pr (NO3)3, butyl titanate, ethylene glycol and citric acid as main raw materials, praseodymium titanate (Pr2Ti2O7) was prepared by the sol-gel process. The samples were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), thermal gravity-differential thermal analysis (TG-DTA), diffuse-reflection spectra (DRS) and Fourier transform infrared (FT-IR). The effect of different calcination temperature and illumination time on the photocatalytic properties of Pr2Ti2O7 was investigated. It was found that the single phase Pr2Ti2O7 could be obtained through sol-gel process and calcination at 1000 °C. The Pr2Ti2O7 samples calcination at 1000 °C were uniform , and the resulting product had a particle size of 200 nm and an optical band gap of 3.26 eV. Under ultraviolet light, the degradation of methyl orange arrived to 80.11% after 180 min of photocatalytic reaction. The Pr2Ti2O7 samples showed good photocatalytic activity for decomposition of methyl orange.


2012 ◽  
Vol 624 ◽  
pp. 34-37
Author(s):  
Xiao Yan Zhang ◽  
Wen Shu Hu ◽  
Xi Wei Qi ◽  
Gui Fang Sun ◽  
Jian Quan Qi ◽  
...  

Bi2Al4O9 powders were prepared by sol-gel process. The precursors were heated at 500-800°C for 2h to obtain Bi2Al4O9 powder and X-ray diffraction (XRD), Differential thermal analysis (DTA), thermogravimetric analysis (TG), field emission scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) techniques were used to characterize precursor and derived oxide powders. XRD analysis show that the powder is still amorphous after calcined at 500°C. The peaks of Bi2Al4O9 become sharp after calcined at 575°C though still existing some amorphous phase. After calcining at 675-800°C, the powder has fully turned into pure Bi2Al4O9 phase. The crystallization process can also be confirmed by DTA-TG and IR. Calcining the precursor at 575°C, the absorption bands at 527 cm-1, 738 cm-1, 777 cm-1, and 919 cm-1are observed, which are assigned to Bi2Al4O9 and becoming stronger and sharper with the increase of temperature.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


1996 ◽  
Vol 459 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
A. Reynés-Figueroa ◽  
R. S. Katiyar ◽  
D. Ravichandran ◽  
...  

ABSTRACTThin films of SrBi2Nb2O9 (SBN) with thicknesses of 0.1, 0.2, and 0.4 μ were grown by Sol-gel technique on silicon, and annealed at 650°C. The SBN films were investigated by Raman scatering for the first time. Raman spectra in some of the samples present bands around 60, 167, 196, 222, 302, 451, 560, 771, 837, and 863 cm−1, which correspond to the SBN formation. The study indicates that the films are inhomogeneous, and only in samples with thicknesses 0.4 μ the SBN material was found in some places. The prominent Raman band around 870 cm−1, which is the A1g mode of the orthorhombic symmetry, is assigned to the symmetric stretching of the NbO6 octahedrals. The frequency of this band is found to shift in different places in the same sample, as well as from sample to sample. The frequency shifts and the width of the Raman bands are discussed in term of ions in non-equilibrium positions. FT-IR spectra reveal a sharp peak at 1260 cm−1, and two broad bands around 995 and 772 cm−1. The bandwidths of the latter two bands are believed to be associated with the presence of a high degree of defects in the films. The experimental results of the SBN films are compared with those obtained in SBT (T=Ta) films. X-ray diffraction and SEM techniques are also used for the structural characterization.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 601
Author(s):  
Yahua Hu ◽  
Mu Gu ◽  
Xiaolin Liu ◽  
Juannan Zhang ◽  
Shiming Huang ◽  
...  

Uniform Lu2O3:Eu3+ nanowire arrays were successfully prepared by the sol-gel process using anodic aluminum oxide (AAO) templates. The as-synthesized nanowires are homogeneous, highly ordered, and dense and have a uniform diameter of ~300 nm defined by the AAO templates. The X-ray diffraction and selected area electron diffraction results show that the Lu2O3:Eu3+ nanowires have a polycrystalline cubic structure, and the crystallite size of the Lu2O3:Eu3+ nanowires is confined by the AAO template. The nanowires within the AAO template showed good photoluminescence and X-ray-excited optical luminescence performances for Lu2O3:Eu3+. The emission peaks were attributed to the 5D0 → 7FJ transitions of Eu3+ (J = 0, 1, 2, 3).


2019 ◽  
Vol 07 (01n02) ◽  
pp. 1950002
Author(s):  
Nadir Lalou ◽  
Ahmed Kadari

This work proposes the synthesis of nanocrystalline calcium oxide (CaO) pure and doped with different concentrations of lithium (Li[Formula: see text]) ions by sol–gel process. Calcium nitrate (Ca(NO[Formula: see text]4H2O; 99.99%) and lithium nitrate (LiNO3; 99.99%) were used as precursors. The synthesized powders were characterized by several techniques such as: UV-Vis transmission spectroscopy, Fourier Transform Infra-red spectroscopy (FT-IR) and X-ray diffraction (XRD). The main objective of this paper is to study the influence of lithium (Li[Formula: see text] ratio) on the structural and optical properties of synthesized powders. The band gap values decreased with the increasing of Li[Formula: see text] ions in CaO lattice; the slight change in the band gap was directly related to the energy transfer between the CaO excited states and the 2s levels of Li[Formula: see text] ions. The influence of Li[Formula: see text] doping on the physical properties of CaO nanocrystalline will be studied for the first time in this work; no literature has previously published this kind of impurities.


2012 ◽  
Vol 512-515 ◽  
pp. 207-210
Author(s):  
Quan Wen ◽  
Jian Feng Huang ◽  
Li Yun Cao ◽  
Jian Peng Wu

V2O5 powders were successfully synthesized by the EDTA assistanced ultrasound sol-gel process using NH4VO3 and EDTA, NH3•H2O as raw materials. The synthesized activation energy and the influence of pH values and the calcination temperatures on the phases and microstructures of powders were particularly investigated. The precursor powders and the V2O5 powders were characterized by X-ray diffraction (XRD), fourier transform inelectron microscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry-thermal gravimetric (DSC-TG). Results show that the obtained products exhibit good crystallization under the conditions of pH=4, calcination temperature 400~500 °C and calcination time 0.5 h during the synthesizing process. The as-prepared V2O5 powders show preferred growth orientation along (001) plane at the pH=4. By DSC analysis, the ultrasonic cavitation result in the decrease in synthesized activation energy obviously than that was prepared without ultrasonic irradiation.


2018 ◽  
Vol 21 (1) ◽  
pp. 051-056
Author(s):  
A. Nichelson ◽  
S. Thanikaikarasan ◽  
K. Karuppasamy ◽  
S. Karthickprabhu ◽  
T. Mahalingam ◽  
...  

A new type of lithium enriched cathode material Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 was synthesized by sol-gel method with citric acid as a chelating agent. The structural and morphological studies were systematically investigated through X-ray diffraction, SEM with EDS, FT-IR and Raman analyses. The crystallite size of the Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 cathode material was found to be 45 nm thereby leads to the feasible movement of lithium ion all through the material. FT-IR spectroscopy was used to confirm the metal-oxygen interaction in the prepared cathode material. The electrical properties of the Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 cathode material were studied by impedance and dielectric spectral analyzes. Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 showed a maximum ionic conductivity of 10-6 S/cm at ambient temperature.


1997 ◽  
Vol 12 (3) ◽  
pp. 596-599 ◽  
Author(s):  
Ji Zhou ◽  
Qing-Xin Su ◽  
K. M. Moulding ◽  
D. J. Barber

Ba(Mg1/3Ta2/3)O3 thin films were prepared by a sol-gel process involving the reaction of barium isopropoxide, tantalum ethoxide, and magnesium acetate in 2-methoxyethanol and subsequently hydrolysis, spin-coating, and heat treatment. Transmission electron microscopy, x-ray diffraction, and Raman spectroscopy were used for the characterization of the thin films. It was shown that the thin films tend to crystallize with small grains sized below 100 nm. Crystalline phase with cubic (disordered) perovskite structure was formed in the samples annealed at a very low temperature (below 500 °C), and well-crystallized thin films were obtained at 700 °C. Although disordered perovskite is dominant in the thin films annealed below 1000 °C, a low volume fraction of 1 : 2 ordering domains was found in the samples and grows with an increase of annealing temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
S. M. Ismail ◽  
Sh. Labib ◽  
S. S. Attallah

Nano-hematite (α-Fe2O3) and nano-cadmium ferrite (CdFe2O4) are prepared using template-assisted sol-gel method. The prepared samples are analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mössbauer spectroscopy techniques for structural and microstructural studies. Nano-α-Fe2O3 with particle size ~60 nm is formed at 500°C, while nano-CdFe2O4 with smaller particle size (~40 nm) is formed at 600°C. It is found that with a simple sol-gel process we can prepare nano-CdFe2O4 with better conditions than other methods: pure phase at lower sintering temperature and time (economic point) and of course with a smaller particle size. So, based on the obtained experimental results, a proposed theoretical model is made to explain the link between the use of the sol-gel process and the formation of nano-CdFe2O4 as a pure phase at low temperature. This model is based on a simple magnetostatic interaction between the formed nuclei within the solution leading to the formation of the stable phase at low temperature.


Sign in / Sign up

Export Citation Format

Share Document