Microstructural and Mechanical Properties of Ti3SiC2 Composites

2008 ◽  
Vol 403 ◽  
pp. 189-192
Author(s):  
Jow Lay Huang ◽  
Horng Hwa Lu

Ti3SiC2 has been a spectacular material, as it combines many of the best properties of metals and ceramics. This new material has potential applications for fabrication of jet engines and in bonding phases. Microstructure can further enhance the mechanical properties, such as strength, wear resistance and chemical stability. In the current research the different starting powder systems were used to synthesize Ti3SiC2 by hot pressing. The contents of Si were controlled appropriately to obtain Ti3SiC2/TiC ceramic composites. Preliminary results indicated that the fracture toughness and strength were improved. The influences of TiC contents on the microstructure and mechanical properties were investigated and the fracture mechanisms of Ti3SiC2/TiC ceramic composites are discussed qualitatively.

2012 ◽  
Vol 512-515 ◽  
pp. 706-709 ◽  
Author(s):  
Chang Ling Zhou ◽  
Yan Yan Wang ◽  
Zhi Qiang Cheng ◽  
Chong Hai Wang ◽  
Rui Xiang Liu

ZrB2-20%volSiC ceramic composites with different volume of BN short fiber were fabricated by the hot-pressing sintering under 2000°C. The content of BN short fiber changed from 0 to 15vol%. The density, flexural strength, fracture toughness and thermal expansions coefficient were studied. The microstructures of the samples were observed by scanning electron microscopy. The results show that the introducing of BN short fiber into the ZrB2-20%volSiC lead to a serious of change to the mechanical properties of the ceramic. When the content of the BN short fiber is 10vol%, the flexural strength and fracture toughness reach 422.1MPa and 6.15 MPa•m 1/2 respectively. And the mechanism of the increasing toughness was studied.


2010 ◽  
Vol 434-435 ◽  
pp. 173-177 ◽  
Author(s):  
Bao Xia Ma ◽  
Wen Bo Han ◽  
Xing Hong Zhang

Ternary ZrC-SiC-ZrB2 ceramic composites were prepared by hot pressing at 1900 °C for 60 min under a pressure of 30 MPa in argon. The influence of ZrB2 content on the microstructure and mechanical properties of ZrC-SiC-ZrB2 composites was investigated. Examination of SEM showed that the microstructure of the composites consisted of the equiaxed ZrB2, ZrC and SiC grains, and there was a slight tendency of reduction for grain size in ZrC with increasing ZrB2 content. The hardness increased considerably from 23.3 GPa for the ZS material to 26.4 GPa for the ZS20B material. Flexural strength was a strong function of ZrB2 content, increasing from 407 MPa without ZrB2 addition to 627 MPa when the ZrB2 content was 20vol.%. However, the addition of ZrB2 has little influence on the fracture toughness, ranging between 5.5 and 5.7 MPam1/2.


1993 ◽  
Vol 327 ◽  
Author(s):  
Hidehiro Endo ◽  
Masanori Ueki

AbstractFully densified WC-A12O3 composites were successfully consolidated by both hot-pressing and pressureless sintering. The optimum hot-pressing condition for the composites was 1700°C for 2h under a pressure of 40MPa. A remarkable improvement in mechanical properties was achieved in the composite system, especially in WC-30 and -70vol%A12O3, compared to the monolithic WC and A12O3 ceramics. The addition of MgO as a sintering aid had a great effect on the properties of the composites. WC-30vol%A12O3 composite with 1.Owt% MgO addition exhibited flexural strength higher than 1000MPa up to 1200°C, fracture toughness; KIC≥7MPa√m, and hardness; HV ≥2450. In pressureless sintering with the addition of MgO as a sintering aid and subsequent HIP treatment, the WC-30vol%A12O3 composite exhibited the flexural strength higher than 900MPa up to 1200°C.


2008 ◽  
Vol 569 ◽  
pp. 97-100 ◽  
Author(s):  
Tao Zhang ◽  
Hai Yun Jin ◽  
Yong Ian Wang ◽  
Zhi Hao Jin

AlN/BN laminated ceramic composites were fabricated using tape-casting and hot-pressing by optimizing the designs of the structure and geometry of AlN/BN laminated ceramic composites. The results showed that the fracture toughness and bending strength for AlN/BN laminated ceramics reached 9.1MPa.m1/2 and 378MPa respectively. The fracture toughness is two times higher than that of AlN monolithic ceramics. The excellent fracture toughness of AlN/BN laminated ceramics could be mainly attributed to crack deflection, delaminating, branching, parallel propagation and crack laminate pilling out at the AlN/BN weak interface.


2013 ◽  
Vol 745-746 ◽  
pp. 560-564
Author(s):  
Wen Bo Han ◽  
Peng Wang ◽  
Yang Hou

ZrB2-based ceramic composites were prepared through hot-pressing at a temperature of 1880°C. An intragranular microstructure was achieved because of the existence of nanoSiC. In this paper, the mechanical properties of ceramic materials of ZrB2-SiC-G were studied, and the influence of intragranular microstructure on the mechanical properties was analyzed. The values of flexural strength and fracture toughness of ZrB2-20vol%SiCnp-15vol%G reached 551.9MPa and 5.25MPa·m1/2, respectively. Compared to ZrB2-20vol%SiC-15vol%G with micro-SiC, the fracture toughness was improved.


2006 ◽  
Vol 514-516 ◽  
pp. 1695-1699 ◽  
Author(s):  
Isabel M. Martins ◽  
Claudino Xavier ◽  
Maria Helena Mendonça ◽  
Manuela Oliveira

Previous studies had shown that a promising material could be obtained by mixing aluminium-rich sludge with slate powder (with Al2O3:SiO2 molar proportion of 2:1), shaping by uniaxial pressing and sintering at 1300oC, in order both to detoxify the sludge by fixing the metals in a leach-resistant ceramic matrix and to yield a new material from the reactions of the above compounds at high temperature. In view of potential applications, since this material was also found to be inert after leaching tests, a further systematic study, reported in the present paper, was carried out, in order to determine its mechanical properties and discuss them in function of the microstructure. The average values of Vickers hardness HV3 (683), bend strength (126 MPa), Young's modulus (161GPa) and fracture toughness (3.35 MPa.m1/2) are significantly higher than those found for the as sintered slate powders, which is attributed to the increased fraction of α- alumina and reduced content of glassy phase in the microstructure of the material with sludge addition.


2007 ◽  
Vol 336-338 ◽  
pp. 1197-1199
Author(s):  
Bao Qing Zhang ◽  
Xu Ping Lin ◽  
Jing Tao Ma

Microstructure and mechanical properties of CeO2/Y2O3/ZrO2 ceramics were investigated using ultrafine CeO2/Y2O3/ZrO2 powder as the starting material. The structures of CeO2/Y2O3/ZrO2 containing 8~12mol% CeO2 were composed of tetragonal phases. They exhibited an extremely high bending strength (950 MPa) and fracture toughness (12MPa·m1/2). The structural details of CeO2/Y2O3/ ZrO2 were studied by TEM, SEM and XRD. The effects of the structure on mechanical properties were discussed. Plungers and ball valves by the CeO2/Y2O3/ZrO2 ceramics have higher wear resistance and corrosion resistance than metal. Their service life is about 6 ~ 10 fold more than that of metal.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Anton Sergeevich Kaygorodov ◽  
Vasily Ivanovich Krutikov ◽  
Sergey Nikolaevich Paranin

In the present study the mechanical properties of dense alumina-based ceramics obtained by two processing routes are investigated. The application of magnetic-pulsed compaction or hot pressing of the powder leads to a comparable combination of microhardness, elastic modulus, and fracture toughness. The insertion of Al into Al2O3 powder increases the microdistortions of the crystalline lattice, resulting in the sufficient decrease of indentation wear-resistance. The usage of ZrO2 or TiCN as dopants to alumina matrix improves slightly the mechanics of the composites with a noticeable decrease of the material lost by 30% compared to pure alumina at closely spaced arrays of indents. Regardless of the synthesis method, the ceramic grains were formed completely with the fracture travelling along the grain boundaries.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2011 ◽  
Vol 43 (3) ◽  
pp. 289-294 ◽  
Author(s):  
J. Zhu ◽  
L. Ye ◽  
F. Wang

A Ti3AlC2/Al2O3 nanocomposite was synthesized using Ti, Al, C and TiO2 as raw materials by a novel combination of high-energy milling and hot pressing. The reaction path of the 3Ti-8C-16Al-9TiO2 mixture of powders was investigated, and the results show that the transitional phases TiC, TixAly and Al2O3 are formed in high-energy milling first, and then TixAly is transformed to the TiAl phase during the hot pressing. Finally, a reaction between TiC and TiAl occurs to produce Ti3AlC2 and the nanosized Ti3AlC2/Al2O3 composite is synthesized. The Ti3AlC2/Al2O3 composite possessed a good combination of mechanical properties with a hardness of 6.0 GPa, a flexural strength of 600 MPa, and a fracture toughness (K1C) of 5.8 MPa?m1/2. The strengthening and toughening mechanisms were also discussed.


Sign in / Sign up

Export Citation Format

Share Document