Effects of Fly Ash and Ground Granulated Blast-Furnaces Slag on Properties of High-Strength Concrete

2009 ◽  
Vol 405-406 ◽  
pp. 219-225 ◽  
Author(s):  
Ji Liang Wang ◽  
Kai Min Niu ◽  
Zhi Feng Yang ◽  
Ming Kai Zhou ◽  
Li Qun Sun ◽  
...  

Effects of fly ash and ground granulated blast-furnace slag (GGBFS) on workability, strength, volume stability and durability of HSC are investigated. Results show that fly ash and GGBFS can improve the workability, increase the later strength of high strength concrete (HSC) remarkably, and reduce the brittleness. In addition, the ameliorative effect of GGBFS on HSC brittleness is more remarkable. With the increase of fly ash and GGBFS, the early elastic modulus of HSC reduces. The elastic modulus is similar to the controlled sample when the load is applied after 60d curing. The fly ash and GGBFS can improve HSC’s resistance to chloride ion penetration significantly. However, the effects of fly ash and GGBFS on freezing-hawing resistance of HSC are not obvious. Besides, the fly ash will reduce freezing-hawing resistance of HSC only when the content of mineral powder is up to 36%.

2012 ◽  
Vol 598 ◽  
pp. 388-392
Author(s):  
Hong Qiang Chu ◽  
Lin Hua Jiang ◽  
Ning Xu ◽  
Chuan Sheng Xiong

The mechanical properties of C100 high-strength concrete used for frozen shaft were studied in this research. The results demonstrate that: The cementitious materials 570kg/m3 concrete 28 strength is only 104.5MPa, which is lower than the C100 requirements; the early strength (3d) of the concrete doped with 30% admixture is less than 20% admixture concrete, but with the age increase, its strength gradually reaches close to concrete doped with 20% admixture, and eventually exceeds the concrete doped with 20% admixture.The tension-compression of high strength concrete doped with 15% fly ash and 15% slag is the smallest, while the tension-compression of the concrete doped 10% fly ash and 10% slag reaches the maximum.The Poisson's ratio of C100 concrete is between 0.20 and 0.24; the compressive elastic modulus is about 50GPa; and the tensile elastic modulus is about 110GPa.


Structures built with normal concrete are fading out from the construction industry due to the development of high strength concrete. The massive structures such as sky scrapers, bridges, tunnels, nuclear plants, underground structures need high strength concrete to withstand the high intensity vertical, horizontal and moving loads etc. The development of high strength alkaline activated concrete will reduce the usage of cement in construction community. Lesser the utilisation of cement will lessen the high emission of carbon dioxide gas into the atmosphere. In this study, high strength concrete using alumina and silica rich materials are made with a mix ratio of 1:1.31:2.22. The water to cement ratio for high strength cement concrete and the alkaline solution to binder ratio for alkaline activated concrete are kept as 0.35. Low calcium fly ash, Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin are used as binders and Manufacturing Sand is used as fine aggregate to made high strength alkaline activated concrete. The high strength alkaline activated concrete tests results are better than the high strength cement concrete.


2012 ◽  
Vol 2 (3) ◽  
pp. 102-104 ◽  
Author(s):  
Suthar Sunil B ◽  
◽  
Dr. (Smt.) B. K. Shah Dr. (Smt.) B. K. Shah

2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


Sign in / Sign up

Export Citation Format

Share Document