Investigation Mechanism of V-Ring Indenter Geometry in Fine-Blanking Process

2009 ◽  
Vol 410-411 ◽  
pp. 305-312 ◽  
Author(s):  
Sutasn Thipprakmas ◽  
Masahiko Jin

The V-ring indenter geometry (angle, height and position) was investigated by using the finite element method (FEM) to theoretically clarify the mechanism and its action in the fine-blanking process. The FEM simulation results indicate that very small or very large V-ring indenter angles, heights, and positions cause difficulty in the rotation of the material-flow and that the hydrostatic pressure is generated with great difficulty in the blanked material; therefore, crack formation occurs easily. The application of a suitable V-ring indenter angle, height, and position significantly suppresses the formation of rotating flow, which results in increased hydrostatic pressure, and crack formation is consequently prevented.

2010 ◽  
Vol 443 ◽  
pp. 140-145 ◽  
Author(s):  
Suthep Yiemchaiyaphum ◽  
Masahiko Jin ◽  
Sutasn Thipprakmas

Considering the advantages of the fine-blanking process, the smooth-cut surface without further operation could be fabricated. However, one of the major problems of the fine-blanking is the occurrence of the die-roll formation. This problem is the main factor which affects the quality of the fine-blanked parts. In this study, to reduce the amount of die-roll formation, the application of back-up ring was proposed. The finite element method (FEM) was used to investigate the effects of back-up ring. In addition, the effects of bridge width were also investigated. The FEM simulation results illustrated that the mechanism of back-up ring and the effects of bridge width could be theoretically clarified base on the material flow analysis. The FEM simulation and experimental results showed the good agreement with each other. Therefore, the application of back-up ring could reduce the amount of die-roll formation on the fine-blanked parts. In this study, the amount of die-roll formation increased as the bridge width increase and it was constant at the bridge width of over 15 mm.


2013 ◽  
Vol 721 ◽  
pp. 397-401
Author(s):  
Li Min Wen ◽  
Qing Li ◽  
Yi Min Wang

A numerical model research of fine-blanking has been built up. The fine-blanking process of parts with pressure is 0KN20 KN40 KN60 KN respectively , thickness of plate 2.9mm and diameter 16mm,of steel 45, has been simulated. Through simulation, the study gets the material distribution situation of mean-stress fields in the progress of fine-blanking, and analyzes the relation between mean-stress fields and the crack of shearing zone. And get the pressure optimization value.


Author(s):  
Sutasn Thipprakmas ◽  
Pakkawat Komolruji ◽  
Wiriyakorn Phanitwong

In recent years, the requirements for high dimensional precision on Z-bent shaped parts have become increasingly stringent. To attain these requirements, the suitable selection of the Z-die bending type has to be considered much more strictly. In this research, two types of Z-bending processes, offset Z-die bending and wiping Z-die bending, were investigated using the finite element method (FEM) to identify the spring-back characteristics and dimensions of Z-bent shaped parts. In the case of offset Z-die bending, the spring-back characteristics on both bend angles were similar. In contrast, in the case of wiping Z-bending, the spring-back characteristics on both bend angles were different. In addition, the dimensions of the Z-bent shaped parts were investigated. It was found, in the case of wiping Z-bending, that web thinning was generated and the outer bend radius was out of tolerance. To validate the FEM simulation results, experiments were carried out. The FEM simulation results showed good agreement with the experimental results in terms of the bend angles and the overall geometry of the Z-bent shaped parts. To achieve precise Z-bent shaped parts, the suitable selection of Z-die bending type in the Z-die bending process is very important.


2013 ◽  
Vol 549 ◽  
pp. 92-99
Author(s):  
Wiriyakorn Phanitwong ◽  
Sutasn Thipprakmas

In recent years, the requirements on the complicated deep-drawn parts with the high dimension precision are increasingly. As the major defect, the concave wall feature which commonly encounter in the complicated deep-drawn parts of the difficult-to-deep draw material is focused. In this research, the effects of draw-bending characteristics on concave wall feature during deep-drawing process are clearly identified. The mechanism of concave wall feature related to the draw-bending characteristic was investigated and clearly identified by using the finite element method (FEM) and the experiments were also performed to validate the FEM-simulation results. On the basis of stress distribution, the effects of draw-bending characteristics on the concave wall feature could be clearly identified via the changes of stress distributions on the wall, convex feature and spring-go feature on the bottom surface, and spring-back feature on the top surface. However, comparing with U-draw bending model, the effects of draw-bending characteristics was decreased and the concave wall feature in the case of deep-drawing model was smaller than that in the case of U-draw bending model. The experiments were carried out in both cases of the deep-drawing and U-draw bending models to validate the FEM-simulation results. The FEM-simulation results showed a good agreement with the experimental results with reference to the distribution of material thickness.


2011 ◽  
Vol 337 ◽  
pp. 236-241 ◽  
Author(s):  
Xin Hua Huang ◽  
Hua Xiang ◽  
Xin Cun Zhuang ◽  
Zhen Zhao

Nowadays, the compound fine-blanking forming process is one of the most important processes to produce complicate multifunctional parts without subsequent machining. However, the big die-roll occurs in the sharp area is a common problem in this process. In this paper, the method with negative punch-die clearance was proposed to solve this problem by comparing three feasible plans. In addition, the influence on the process with different value of the negative punch-die clearance was studied by the finite element method (FEM). The results of this study verified that the process with suitable value of the negative punch-die clearance can result in significant decrease of the die-roll size. The relationship between the material flow near the region of die-roll and the punch-die clearance was also clarified.


2011 ◽  
Vol 314-316 ◽  
pp. 695-702
Author(s):  
Jian Lan ◽  
Yong Zhang ◽  
Chang Peng Song ◽  
Lin Hua

The shrinkage cavity defect of the extruded boss is harmful to the quality of fine blanking workpiece and process. To suppress the shrinkage cavity defect, firstly, the boss extrusion is simulated to analyze main features of metal flow and the causes of the shrinkage cavity defects; secondly, some parameters affecting the material flow, such as the size of die and punch, blank holder force, friction coefficient, sheet thickness and counter force, are studied to figure out their influences on the depth of shrinkage cavities respectively; finally, the process parameters of a special workpiece are selected according to research results above, and experiment verified that the selected parameters can suppress the shrinkage cavity defect pertinently. In the paper, the shrinkage cavity defect is systematically studied for the first time, and this provides the base to design and optimize the extruded boss feature in fine blanking process.


2012 ◽  
Vol 482-484 ◽  
pp. 62-65 ◽  
Author(s):  
Lu Lu ◽  
Zhao Xu Wang ◽  
Fu Zhong Wang

In this paper, the finite element method (FEM) is used for simulation of piercing process of the tube in Mannesmann mill. The sensitivity of the simulation results to numerical methods and physical parameters is discussed. The simulated results visualize dynamic evolution of force in the piercing process. The stability of the process and force condition is analyzed by FEM simulation. The model is verified by comparing the values of calculated force parameters and those measured in laboratory conditions. Finally, the future plans are presented.


2016 ◽  
Vol 719 ◽  
pp. 127-131 ◽  
Author(s):  
Arkarapon Sontamino ◽  
Sutasn Thipprakmas

Currently, the shaped parts combined with straight, concave, and convex portions are increasingly fabricated. To produce the straight portion, the shearing theory is usually applied. As well as, to produce the concave and convex portions, the punching and blanking theories are usually applied. However, with the same die-cutting process parameters, the comparison of cut surface features of straight, concave, and convex portions has not been investigated yet. Therefore, in the present research, the comparison of the cut surface features in various die-cutting processes, including shearing, blanking, and punching processes are investigated. The finite element method (FEM) was used as a tool to investigate these cut surface features. The cut surface features were investigated and clearly identified via the changes of the stress distribution analyses. The results elucidated that with the same die-cutting process parameters, the different cut surface features were obtained. Specifically, the crack formations were easily generated in the case of blanking process, following by the shearing and punching processes, respectively. Therefore, the smooth cut surface was smallest in the case of blanking process, following by the shearing and punching processes, respectively. The laboratory experiments were carried out to verify the accuracy of the FEM simulation results. Based on the cut surface features, the FEM simulation results showed good agreement with the experimental results in terms of the cut surface features. Therefore, to design the die-cutting process parameters to meet the product requirements of complicated shapes, the understanding on these working process parameters being upon the shaped parts is necessarily.


2009 ◽  
Vol 410-411 ◽  
pp. 335-343
Author(s):  
Mohammad Bakhshi-Jooybari ◽  
Majid Elyasi ◽  
A. Gorji ◽  
G. Mohammad-Alinejad ◽  
S.J. Hosseinipour ◽  
...  

Seamless tubular components, such as stepped tubes, conical tubes and box shape tubes, are mainly produced in tube hydroforming process. In forming the components in this process, complete filling the die corners is very difficult. In this paper, the mechanism of improvement of die corner filling in a proposed tube hydroforming die was investigated. The FEM simulation results showed that the material flow and stress distribution could theoretically clarify the die corner filling in the proposed die. Also, the comparison of the die corner filling between the new die and a conventional die was explained. In order to verify the simulation results, some experiments were performed.


2004 ◽  
Vol 261-263 ◽  
pp. 603-608 ◽  
Author(s):  
Gang Fang ◽  
P. Zeng

Fine blanking process with V-ring was simulated with FEM. The geometric parameters of the die, the punch, the serrated ring and the sheet are modeled. In this paper, some other assumptions are made for the analysis. The workpiece is considered as elastic-plastic material, while the tools are defined as rigid bodies. The damage model taking into account the influence of hydrostatic stress is used to simulate material fracture in blanking. The stress status and forming process are analyzed. Authors also investigated the effect of distance from tooth to die edge on roll-over high. The simulation can reflect the laws of fine blanking process.


Sign in / Sign up

Export Citation Format

Share Document