Removal of Brilliant Green from Aqueous Solution Using Diatomite-Attapulgite Composite Nano-Size Adsorbent

2009 ◽  
Vol 419-420 ◽  
pp. 525-528 ◽  
Author(s):  
Zheng Wang ◽  
Lin Sheng Zhang ◽  
Zhao Qian Jing

Diatomite-attapulgite composite nano-size adsorbent was prepared using natural diatomite and attapulgite through compounding, granulation, calcination and activation. After elementary characterization of this adsorbent by mercury porosimeter, batch tests were carried out to examine its removal mechanism of brilliant green. The influence of adsorbent concentration, contact time, pH, temperature and initial brilliant green concentration on the dye removal were investigated. Increase in adsorbent dosage led to increase in brilliant green adsorption due to increased number of adsorption sites. Maximum adsorption of brilliant green was found at adsorbent dosage of 100 g/L. Adsorption equilibrium attained within 2 h time. The pH variation studies showed that the adsorption process was highly pH dependent. The optimum pH for adsorption of brilliant green was found to be >7. The sorption of brilliant green decreased with the rise of temperature because adsorption process was exothermic. Adsorption isotherm studies showed that Langmuir model fitted the experimental data better than Freundlich model.

2010 ◽  
Vol 105-106 ◽  
pp. 627-630
Author(s):  
Zheng Wang ◽  
Lin Sheng Zhang ◽  
Zhao Qian Jing

Zeolite-attapulgite nano-pore structure ceramisite was prepared using natural zeolite and attapulgite through compounding, granulation and calcination.After elementary characterization of this ceramisite by mercury porosimeter, batch tests were carried out to examine its removal mechanism of ammonia. The influences of pH, contact time, initial ammonia concentration and temperature on the ammonia removal were investigated. The optimum pH for adsorption of ammonia was found to be less than 7. The adsorption process followed pseudo-second order rate model. Adsorption isotherm studies showed that Freundlich model fitted the experimental data. The sorption of ammonia increased with the rise of temperature because adsorption process was endothermic. The zeolite-attapulgite composite nano- pore structure ceramisite shows very good promise for practical applicability of ammonia removal from aqueous solution.


2019 ◽  
Vol 233 (2) ◽  
pp. 201-223 ◽  
Author(s):  
Khalida Naseem ◽  
Rahila Huma ◽  
Aiman Shahbaz ◽  
Jawaria Jamal ◽  
Muhammad Zia Ur Rehman ◽  
...  

Abstract This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Omnia A. A. El-Shamy ◽  
Ragaa E. El-Azabawy ◽  
Olfat. E. El-Azabawy

Superparamagnetic magnetite-alginate nanoparticles (M-AlgNPs) were synthesized utilizing a coprecipitation method. Then, the prepared M-AlgNPs were characterized via Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction spectroscopy (XRD) to affirm the formation and the crystallinity of this composite. In addition, the surface morphology of the prepared nanoparticles was inspected by transmission electron microscopy (TEM) which revealed well-dispersed nanoparticles of Fe3O4 into alginate. The adsorption characteristics of the synthesized nanoparticles for removing Ni+2 and Co+2 from wastewater were evaluated via atomic absorption measurements (AAS). The elimination efficiency of the M-AlgNPs was detected at pH=7 in 100 ppm (initial concentration) of Ni+2 and Co+2, separately. The M-AlgNPs provided the maximum equilibrium uptake percentage for Ni+2 and Co+2 of 97.88 and 95.01%, respectively. The adsorption of Ni+2 and Co+2 onto the M-AlgNP surface was found to fit the Langmuir model with R2 values higher than that obtained from the Freundlich model for both metal ions. Moreover, RL “separating factor” for the adsorption process was assessed and found to be less than unity; this expresses the higher ability of the investigated metal ions to be adsorbed onto the M-AlgNP surface. The adsorption method was discovered to be pH-dependent and well-suited to the isothermal equations of Langmuir and Freundlich. For regeneration studies, M-AlgNPs have been investigated and results confirmed that it could be reused with effective sorption capacity over three cycles.


2010 ◽  
Vol 426-427 ◽  
pp. 118-121 ◽  
Author(s):  
Zheng Wang ◽  
Lin Sheng Zhang ◽  
Zhao Qian Jing

Attapulgite-zeolite composite nano-structure adsorbent was manufactured using natural attapulgite and zeolite. The obtained adsorbent was characterized by scanning electron microscope, energy dispersive X-ray spectrometer and mercury porosimeter. After elementary characterization of this adsorbent, batch tests were carried out to examine its removal mechanism of phenol. The influence of pH, contact time and initial phenol concentration were investigated. The pH variation studies showed that the optimum pH for adsorption of phenol was found to be 7. Adsorption equilibrium attained within 1 h time. The adsorption process followed pseudo-second-order kinetic model. Adsorption isotherm studies showed that Langmuir model fitted the experimental data better than Freundlich model. The attapulgite-zeolite composite nano-structure adsorbent in this study shows very good promise for practical applicability of phenol removal from aqueous solution.


2019 ◽  
Vol 80 (1) ◽  
pp. 164-172 ◽  
Author(s):  
Xuan Guo ◽  
Pengchao Wang ◽  
Peng Li ◽  
Chengjun Zhang

Abstract The purpose of this study was to investigate the effect of Cu(II) on the adsorption performance and mechanism of tetracycline (TC) adsorption by natural zeolite (NZ) in aqueous solution. Low levels of Cu(II) (<0.01 mmol/L) enhanced the extent of TC adsorption from ∼0.4 mg/g (in the absence of Cu(II)) to ∼0.5 mg/g (with 0.01 mmol/L Cu(II)), resulting in 99% removal of the total TC content. The TC adsorption gradually decreased with increase in the initial pH, but the coexistence of Cu(II) lowered the extent of decrease. The adsorption process was better simulated by the pseudo-second-order kinetics model, but the isotherm model that was more fitting changed from the Langmuir to the Freundlich model as Cu(II) increased, indicating the coexistence of Cu(II) and TC altered the adsorption mechanisms. However, the residual TC in solution increased from 0 to ∼6 mg/L as the concentration of Cu(II) increased from 0 to 1 mmol/L, suggesting a competition between TC and Cu(II) for the adsorption sites in NZ. Fourier transform infrared spectroscopy analysis showed that the functional groups on the surface of NZ changed after the adsorption of TC, suggesting that complex reactions had occurred on the surface of the adsorbent.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17080-17091
Author(s):  
Xinggang Chen ◽  
Zhuang Tian ◽  
Haina Cheng ◽  
Gang Xu ◽  
Hongbo Zhou

The Cu2+ first bound to the outer mannan and finally entered the cytoplasm. During the whole adsorption process, the number of adsorption sites in the outer and middle cell walls was the largest, and then gradually decreased.


2005 ◽  
Vol 65 (2) ◽  
pp. 371-376 ◽  
Author(s):  
M. R. Vale ◽  
R. V. Pereira ◽  
S. M. Almeida ◽  
Y. M. Almeida ◽  
S. F. L. C. Nunes

Adenosine is an important signaling molecule for many cellular events. Adenosine deaminase (ADA) is a key enzyme for the control of extra- and intra-cellular levels of adenosine. Activity of ADA was detected in hemolymph of B. glabrata and its optimum assay conditions were determined experimentally. The pH variation from 6.2 to 7.8 caused no significant change in ADA activity. Using adenosine as a substrate, the apparent Km at pH 6.8 was 734 µmols.L-1. Highest activity was found at 37ºC. Standard assay conditions were established as being 15 minutes of incubation time, 0.4 µL of pure hemolymph per assay, pH 6.8, and 37ºC. This enzyme showed activities of 834 ± 67 µmol.min-1.L-1 (25ºC) and 2029 ± 74 µmol.min-1.L-1 (37ºC), exceeding those in healthy human serum by 40 and 100 times, respectively. Higher incubation temperature caused a decrease in activity of 20% at 43ºC or 70% at 50ºC for 15 minutes. The ADA lost from 26 to 78% of its activity when hemolymph was pre-incubated at 50ºC for 2 or 15 minutes, respectively. Since the ADA from hemolymph presented high levels, it can be concluded that in healthy and fed animals, adenosine is maintained at low concentrations. In addition, the small variation in activity over the 6.2 to 7.8 range of pH suggests that adenosine is maintained at low levels in hemolymph even under adverse conditions, in which the pH is altered.


1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


1992 ◽  
Vol 25 (6) ◽  
pp. 125-139 ◽  
Author(s):  
J. Kappeler ◽  
W. Gujer

To predict the behaviour of biological wastewater treatment plants, the Activated Sludge Model No. 1 is often used. For the application of this model kinetic parameters and wastewater composition must be known. A simple method to estimate kinetic parameters of heterotrophic biomass and COD wastewater fractions is presented. With three different types of batch-tests these parameters and fractions can be determined by measuring oxygen respiration. Our measurements showed that the maximum specific growth rate µmax of heterotrophic biomass depends on temperature, reactor configuration and SRT. In typical wastewater treatment plants of Switzerland the amount of readily biodegradable substrate was generally small (about 9 % of the COD in primary effluent). The same method can also be used to determine kinetic parameters of nitrifying biomass.


1998 ◽  
Vol 38 (1) ◽  
pp. 303-310 ◽  
Author(s):  
V. Naidoo ◽  
V. Urbain ◽  
C. A. Buckley

Denitrification kinetics and wastewater characterization of eight different plants in Europe are discussed. Denitrification batch tests revealed three distinct rates except in the cases of Plaisir, Rostock and Orense where 4 rates were observed. The latter three plants revealed atypical rapid initial rates which were between 7 and 21 mgN/gVSS.h. All denitrification kinetics under non-limiting carbon conditions revealed fast first rates which ranged between 3.0 and 7.3 mgN/gVSS.h. Acetate was used to simulate denitrification kinetics with readily biodegradable COD present. Two subsequent rates were observed. Rates 2 and 3 ranged between 2 and 3 mgN/gVSS.h, and 1 and 2 mgN/gVSS.h, respectively. The RBCOD fraction varied between 10 and 19%, except for one of the plants where the value determined was 7%.


Sign in / Sign up

Export Citation Format

Share Document