Experiments on High-Speed and Dry Cutting with PCBN Tool

2010 ◽  
Vol 431-432 ◽  
pp. 114-117
Author(s):  
Hai Dong Yang ◽  
Zhen Hua Qing ◽  
Feng Xie ◽  
Chong Gao Zhang

This paper deals with the High-speed Hard and Dry Cutting mechanism of hardened alloy-steel with PCBN tool: the cutting speed and workpieces temperature and tool wear are being discussed in different cutting speeds when cutting alloy-steel 42CrMo. After the workpiece temperature measured by ThermaVision, it is proved that the workpiece temperature was not high and changed little. Through the SEM and EDS analyses for chip and tool wear, it is proved that PCBN tool is suitable for High-speed Hard and Dry Cutting. It is suitable for PCBN tool to cut hardened alloy-steel 42CrMo instead of grinding.

2010 ◽  
Vol 142 ◽  
pp. 26-30
Author(s):  
Zhen Hua Qing ◽  
Dun Wen Zuo ◽  
Feng Xie ◽  
Chong Gao Zhang

The high-speed hard and dry cutting chips of hardened alloy-steel with PCBN tool is presented in this paper: After the work piece temperature measured by ThermaVision infrared thermometer, it is proved that the heat generated by cutting is carried out by chips; After SEM analyzed chip it is proved that the cutting temperature is increased and then fallen and the PCBN tool suitable for high-speed hard and dry cutting. It is suitable for PCBN tool cutting hardened alloy-steel 42CrMo instead of grinding.


Author(s):  
Justin L. Milner ◽  
Jeffrey A. Beers ◽  
John T. Roth

Machining is a popular and versatile manufacturing process that is widely used in today’s industry when producing metallic parts; however, limited tool life can make this an expensive and time consuming fabrication technique. Consequently, methods that decrease the rate of tool wear and, thus, increase tool longevity are a vital component when improving the efficiency of machining processes. To this end, cryogenically treating cutting tools (especially high-speed steel tooling) is becoming more commonplace since research has shown that the treated tooling exhibits significantly higher wear resistance. At this point, however, the effect of cryogenic treatments on ceramic tooling has not been established. Considering this, the research herein presents a feasibility study on the effectiveness of using cryogenic treatments to enhance the wear resistance of WG-300 whisker-reinforced ceramic cutting inserts. To begin, the effect of the cryogenic treatment on the insert’s hardness is examined. Subsequently, tool wear tests are conducted at various cutting speeds. Through this study, it is shown that cryogenically treating the ceramic inserts decreases the rate of tool wear at each of the cutting speeds that were tested. However, the degree of wear resistance introduced by cryogenically treating the inserts proved to be highly dependent on the cutting speed, with slower speeds exhibiting greater improvements. Thus, based on this initial study, the cryogenic treatment of ceramic tooling appears to produce beneficial results, potentially increasing the overall efficiency of machining processes.


2011 ◽  
Vol 188 ◽  
pp. 578-583 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Masahiro Anzai ◽  
Tsuneo Egawa ◽  
Norihiko Narutaki ◽  
Kazuhiro Shintani ◽  
...  

This paper describes strong nonlinearity in log V-log L relationship, which is often found in machining of supperalloys, titanium alloys, hardened steels, cast irons, etc. The nonlinearity plays an important and favorable role in extension of life-span cutting distance at higher cutting speeds; that is, in a certain range of cutting speed, life-span cutting distance increases with cutting speed. Results of tool wear in a sliding test and cutting experiments, which showed the evidences of strong nonlinearity, were investigated and the mechanisms causing the nonlinearity were discussed.


2018 ◽  
Vol 51 (9-10) ◽  
pp. 417-430 ◽  
Author(s):  
Zülküf Demir

The differences in the cutting speed are a serious problem along the cutting edge of the drill, in drilling operations. This problem can partly be solved reducing the length of the cutting edge via changing the drill point angle. In addition, in this study, the effect of point angle, feed rate, and cutting speed on drilling is investigated. For identifying the optimum cutting parameters, AISI 1050 steel alloy was selected as the experimental specimen, these specimen were pre-drilled 5 mm in diameter due to eliminating the effect of the chisel edge. In the experiments, the holes were drilled only at a depth of 10 mm in order not to give any harm to the dynamometer while measuring thrust force. For this aim, in drilling process, drills with point angle of 100°, 118°, 136°, 154°, and 172° were selected. In conclusion, the thrust force, the tool wear, and the surface roughness linearly decreased with increasing point angles due to less removal chip area, in per revolve of the tool. However, the thrust force, the tool wear, and the surface roughness were adversely affected at higher feed rates and lower cutting speeds. The hole dimensional accuracy decreased at lower feed rates and cutting speeds but at higher point angles and concurrently at higher feed rates but lower point angles and cutting speeds. However, the hole dimensional accuracy showed more decisiveness at 118° than other point angles, while the highest dimensional accuracy values recorded at 136° point angle, at higher cutting speeds.


2012 ◽  
Vol 565 ◽  
pp. 370-375 ◽  
Author(s):  
Jun Shinozuka ◽  
Hidenobu Yachi ◽  
Tappei Higashi ◽  
Masato Sando ◽  
Toshio Maetani ◽  
...  

Orthogonal cutting experiment of powder metallurgy steel was performed in cutting speeds ranging from 1 m/s to 150 m/s. High-speed cutting experiment was carried out with a high-speed impact-cutting tester. This study focuses on the change in the effects of free-cutting of manganese sulfide with cutting speed. The principal force and thrust force were measured. The cross sections of the chip and of the machined surface were observed. Color mapping analysis of the tool-chip contact region on the rake face with EPMA was done. Although the serrated type of chip formed in all experiments, the cutting mechanism was analyzed by employing a shear plane model. This paper discusses how the effect that MnS promotes the ductile fracture and the effect that MnS improves the friction property at the tool-chip interface change as the cutting speed increases.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1679
Author(s):  
Guosheng Su ◽  
Yuhao Wang ◽  
Zhitao Han ◽  
Peirong Zhang ◽  
Hongxia Zhang ◽  
...  

The contact stress and heating effect between the cutting tool and workpiece in metal machining is symmetrical. However, the symmetry may be destroyed by changes in the workpiece material mechanical properties, such as ductility. The goal of this study is to reveal the wear characteristics of the cutting tool in machining a ductile metal with the cutting speed at which the metal is embrittled by the high-strain-rate-embrittle effect (HSREE). Orthogonal high-speed turning experiments were carried out. Pure iron type DT8 was cut at different cutting speeds, ranging from 1000 m/min to 9000 m/min. The shape and morphology of the chips obtained in the experiment were observed and analyzed by optical microscope and scanning electron microscope (SEM). Tool wear characteristics at different cutting speeds were observed. It shows that the pure iron becomes completely brittle when the cutting speed is higher than 8000 m/min. On the rake face, the coating of the cutting tool bursts apart and peels off. A matrix crack originates in the cutting edge or rake face and extends to the flank face of the cutting tool. The effects of HSREE on the tool wear is discussed. The findings of this study are helpful for choosing a suitable tool for brittle cutting of the ductile metal pure iron with very high cutting speed and solving the problems in machining due to its high ductility and high stickiness.


2017 ◽  
Vol 889 ◽  
pp. 84-89
Author(s):  
Pandithevan Ponnusamy ◽  
Mullapudi Joshi

In high speed machining, to dynamically control the mechanical behaviour of the materials, it is essential to control temperature, stress and strain by appropriate speed, feed and depth of cut. In the present work, to predict the mechanical behaviour of Ti6Al4V and 316L steel bio-materials an explicit dynamic analysis with different cutting speeds was carried out. Orthogonal cutting of 316L steel and Ti6Al4V materials with 720 m/min, 900 m/min and 1200 m/min cutting speeds was performed, and the distribution of stress and temperature was investigated using Jonson-Cook material model. Additionally, the work aimed at determining the effect of cutting speed on work piece temperature, when cutting is carried out continuously. From the investigation, it was found that, while machining Ti6Al4V material, for the increase in cutting speed there was increase in tool-chip interface temperature. Specifically, this could found till the cutting speed 900 m/min. But, there was a decrease in tool-chip interface temperature for the increase in speed from 900 m/min to 1200 m/min. Similarly for 316L steel, the tool-chip interface temperature increased when increasing the cutting speed till 900 m/min. But reduction in temperature from 650 °C to 500 °C for steel and 1028 °C to 990 °C for Ti6Al4V were found, when the cutting speed increased from 900 m/min to 1200 m/min. The study can be used to conclude, at what temperature range the adoption of material with controlled shape and geometry is possible for potential applications like, prosthetic design and surgical instruments prior to fabrications.


2012 ◽  
Vol 523-524 ◽  
pp. 1041-1046 ◽  
Author(s):  
Tappei Higashi ◽  
Masato Sando ◽  
Jun Shinozuka

High-speed orthogonal cutting experiments with cutting speeds of up to 200 m/s with a high-speed impact cutting tester of air-gun type are attempted. In this tester, a light projectile with a small built-in cutting tool is loaded into a tube, being accelerated by a compressed gas. The projectile captures the chip that is indispensable to analyze the cutting mechanism. The projectile holding the chip is decelerated by another compressed gas just after finishing the cutting, being stopped without damage in the tube. Successful experiment can be accomplished by setting adequate values of the operation parameters for the experiment, which are the pressure of each gas and the opening and shutting time of the solenoid-controlled valve for each compressed gas. In order to determine the adequate values of these parameters, a ballistic simulator that simulates the velocity and position of the projectile traveling in the tube is developed. By setting the values of these parameters obtained by the simulator, the cutting speed of 200 m/s is achieved when the ambient pressure is set to be a vacuum and helium is used for each compressed gas. This paper describes the ballistic simulator developed and shows the experimental results of the high-speed cutting of aluminum alloy A2017.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


2020 ◽  
Vol 4 (2) ◽  
pp. 34 ◽  
Author(s):  
Timo Platt ◽  
Alexander Meijer ◽  
Dirk Biermann

The increasing demand for complex and wear-resistant forming tools made of difficult-to-machine materials requires efficient manufacturing processes. In terms of high-strength materials; highly suitable processes such as micromilling are limited in their potential due to the increased tool loads and the resulting tool wear. This promotes hybrid manufacturing processes that offer approaches to increase the performance. In this paper; conduction-based thermally assisted micromilling using a prototype device to homogeneously heat the entire workpiece is investigated. By varying the workpiece temperature by 20 °C < TW < 500 °C; a highly durable high-speed steel (HSS) AISI M3:2 (63 HRC) and a hot-work steel (HWS) AISI H11 (53 HRC) were machined using PVD-TiAlN coated micro-end milling tools (d = 1 mm). The influence of the workpiece temperature on central process conditions; such as tool wear and achievable surface quality; are determined. As expected; the temporary thermal softening of the materials leads to a reduction in the cutting forces and; thus; in the resulting tool wear for specific configurations of the thermal assistance. While only minor effects are detected regarding the surface topography; a significant reduction in the burr height is achieved.


Sign in / Sign up

Export Citation Format

Share Document