Detectors in Barrier Structures of Metal-Lamellar Semiconductors

2010 ◽  
Vol 446 ◽  
pp. 1-10
Author(s):  
Matanat Mehrabova

Recently peaceful use of the nuclear energy and radioactive nuclides has increased the radiation pollution factor in the world and radiation safety problems have become actual ones. The development of the nuclear power engineering, protection and processing of radioactive wastes of nuclear reactors, the use of radioactive isotopes in national economy, nuclear explosion, industrial wastes and etc. may cause the radioactive pollution of the environment. In the case of such pollution the environment as well as living organisms are exposed to radioactive radiation (a-, b-, γ- etc.). Radioactive substances emit radioactive rays and as their decay time varies for natural and artificial radioactive substances the time of their environmental effect ranges from some years to million years.

2018 ◽  
Vol 184 (1) ◽  
pp. 98-108
Author(s):  
Sang-Tae Kim ◽  
Jaeryong Yoo

Abstract In this study, the radiation exposure of workers at workplaces registered and licensed between 2008 and 2017 for the production/sale/use of radioactive isotopes (RI) and radioactive generators (RG) was analysed to evaluate the quality of radiation safety management controls in use. The number of facilities using RIs increased by ~26% from 2008 to 2017 whereas the number of facilities using RGs increased by ~166% over the same period. There were 33 029 radiation workers in all fields in 2008, and the number increased by ~32% to 43 467 by 2017. However, the collective effective dose of radiation received by workers decreased in all industries except for those working in nuclear power plants. In other words, the quality of radiation safety management improved over that same time period due to the systematic, continuous introduction of safety mechanisms by the regulatory authority.


2017 ◽  
Vol 68 (9) ◽  
pp. 2189-2195
Author(s):  
Valeriu V. Jinescu ◽  
Simona Eugenia Manea ◽  
George Jinescu ◽  
Vali Ifigenia Nicolof

Following the activities developed in a nuclear facility result gaseous and liquid radioactive effluents and radioactive solid waste. All these waste contain radioactive isotopes which are potentially pollutants for the environment. In the same time chemicals are, also, pollutants. According to the legislation, discharging of chemicals and radioactive liquid and gaseous effluents into the environment, should meet the requirements of the unrestricted discharge. However, what happens when several pollutants superpose: only chemical pollutants, or only radioactive pollutants, or chemical and radioactive pollutants? Such problems have been solved in this paper on the basis of the principle of critical energy.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Taeseok Kim ◽  
Wonjun Choi ◽  
Joongoo Jeon ◽  
Nam Kyung Kim ◽  
Hoichul Jung ◽  
...  

During a hypothesized severe accident, a containment building is designed to act as a final barrier to prevent release of fission products to the environment in nuclear power plants. However, in a bypass scenario of steam generator tube rupture (SGTR), radioactive nuclides can be released to environment even if the containment is not ruptured. Thus, thorough mitigation strategies are needed to prevent such unfiltered release of the radioactive nuclides during SGTR accidents. To mitigate the consequence of the SGTR accident, this study was conducted to devise a conceptual approach of installing In-Containment Relief Valve (ICRV) from steam generator (SG) to the free space in the containment building and it was simulated by MELCOR code for numerical analysis. Simulation results show that the radioactive nuclides were not released to the environment in the ICRV case. However, the containment pressure increased more than the base case, which is a disadvantage of the ICRV. To minimize the negative effects of the ICRV, the ICRV linked to Reactor Drain Tank (RDT) and cavity flooding was performed. Because the overpressurization of containment is due to heat of ex-vessel corium, only cavity flooding was effective for depressurization. The conceptual design of the ICRV is effective in mitigating the SGTR accident.


2020 ◽  
Vol 6 (1) ◽  
pp. 52-56
Author(s):  
Sri Sugiarti ◽  
Surip Surip ◽  
Merrytiana Fadila

Concerning radiation safety must meet several radiation protection requirements which include justification or utilization of nuclear power, dose limitation, optimization of protection, and radiation safety. The purpose of this study was to determine the optimization of the exposure factor selection and determine the radiation dose received by the patient based on the selection of exposure factors on the thorax examination. The author observed the use of exposure factors on chest radiographic examination with a sample of 60 people. The design of this study uses the correlational method. The independent variables in this study are age, body weight, object thickness, kV, and mAs. Dependent variable exposure to radiation dose on chest examination. The conclusion of this study is the dose exposure level is influenced by age, object thickness, weight, and use of exposure factors which will then be obtained by the DRL (Diagnostic Reference Level) value.


ANRI ◽  
2021 ◽  
Vol 0 (4) ◽  
pp. 60-76
Author(s):  
Lev Belovodskiy ◽  
Aleksandr Panfilov

This year marks the 35-th anniversary of the events related to the liquidation of the consequences of the accident at the Chernobyl nuclear power plant (Chernobyl NPP) and their most important stage - the closure of the destroyed 4-th power unit with a special structure, which was initially called the «Sarcophagus» (later the «Shelter» object). This article presents information about the period May-November 1986 in the aspect of radiation safety of the builders of this unique facility.


Author(s):  
Liming Huang ◽  
Shouhai Yang ◽  
Jie Liu

Radiation safety is an important part of safety assessment of spent fuel dry storage technology. This paper describes the radiation protection design of PWR spent fuel dry storage facility for radiation safety completed by China General Nuclear Power Corporation. Considering the special site conditions, Monte Carlo method is used to complete the precise calculation of the three-dimensional radiation dose field in the spent fuel storage building. Through the spent fuel storage module and the storage building with shielding function, radiation shielding design is completed to meet China’s regulatory requirements, which ensures radiation safety for workers and the public during the transport and storage of spent fuel. It will provide a reference for construction of spent fuel dry storage facility of CPR1000 and HPR1000.


1943 ◽  
Vol 32 (2) ◽  
pp. 231-248 ◽  
Author(s):  
J. D. Kurbatov ◽  
M. L. Pool

Author(s):  
Paul H. Murphy ◽  
James R. Galt

One of the fundamental quests of nuclear cardiology is the search for elements with appropriate chemical properties for use in radiopharmaceuticals, which have radioactive isotopes that produce photons well suited for imaging, and deliver only a small radiation dose to the patient. This requires that that the emission of any radiation that does not contribute to the image be kept to a minimum and that the isotope remains radioactive only for a short period of time. Understanding the emission of radiation from atoms requires an understanding of atomic and nuclear structure and forces.


2017 ◽  
pp. 46-49
Author(s):  
V. Levakin ◽  
K. Yefimova ◽  
S. Polyvoda ◽  
V. Iokst

The paper presents review of the requirements from the new regulation NP 306.2.205-2016 “Requirements for Power Supply Systems Important to Safety of Nuclear Power Plants” and recommendations of IAEA and WENRA for the construction of electrical systems important to safety of nuclear power plants. The research is focused on main differences of NP 306.2.205-2016 from standards that applied to NPP emergency power supply systems (PNAE G-9-026-90, PNAE G-9-027- 91) and which were cancelled in 2016.


Sign in / Sign up

Export Citation Format

Share Document