Effect of Sonication Time and Clay Loading on Nanoclay Dispersion and Thermal Property of Epoxy-Clay Nanocomposite

2011 ◽  
Vol 471-472 ◽  
pp. 490-495 ◽  
Author(s):  
M.J. Adinoyi ◽  
Necar Merah ◽  
Zuhair M. Gasem ◽  
N. Al-Aqeeli

The development of nanoclay-epoxy nanocomposite material requires a suitable blending process to be employed. Amongst blending techniques, sonication has been one of the promising means for polymer-clay nanocomposite fabrication. In this study, epoxy-clay nanocomposites with 2, 4 and 5% clay loadings were fabricated using different sonication periods ranging from 5 to 60 minutes. The effect of sonication time and clay loading on the nanocomposite structure was investigated using Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), Scanning Electron Micropscope (SEM) and Energy Dispersive Spectroscopy (EDS). Differential Scanning Calorimetry analysis indicated that while clay loading reduced the glass transition temperature (Tg), sonication time did not alter Tg significantly. Upon examining the structure of the resulting nanocomposites both exfoliation and intercalation structures were present, yet, neither structure was fully achieved; evident by the XRD patterns. Nonetheless, the predominant structures for most of the nanocomposites were intercalation. Intergallery spacing of the nanocomposites were enhanced with increased sonication time mainly at 2%wt loading; whereas further increase in nano-clay loading resulted in a reduction of the d-spacing. SEM analysis showed that clay agglomerates were present in the nanocomposites irrespective of the sonication time. However, the analysis revealed that dispersion of clay was better in the nanocomposite fabricated at higher sonication time. From the EDS analysis, the different sites in the nanocomposites’ microstructure were identified which were then correlated with the observation made in the fractographic analysis.

2021 ◽  
Vol 5 (4) ◽  
pp. 97
Author(s):  
Berenger ZOGO MFEGUE ◽  
Jean Aimé MBEY ◽  
Sandotin Lassina COULIBALY ◽  
Vincent Laurent ONANA ◽  
Paul-Désiré NDJIGUI

This study focused on the deintercalation of dimethyl sulfoxide (DMSO) from a kaolinite–DMSO complex in various solvents. The use of kaolinite as filler in polymer–clay composite generally faced the difficulty of kaolinite dispersion due to its high cohesion. For improved dispersion of kaolinite within a given matrix, previous intercalation of small polar molecules is usually done prior to its displacement during composite-making. The influence of the solvent polarity on the deintercalation in analyzed here to understand its role during the deintercalation process. The intercalation of the DMSO was done by solution-mixing and its displacement was done in distilled water, ethyl acetate, and acetone. The products of deintercalation were analyzed using Fourier transform infra-red (FTIR), powder X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The weakening of the kaolinite cohesion after DMSO intercalation is demonstrated through the broadening of the diffraction peak associated with the kaolinite on XRD patterns. From FTIR spectra, the weakening is associated with the displacement to low wavenumbers of the Si–O or Al–O vibration bands within the kaolinite–DMSO complex. The kaolinite dehydroxylation temperatures from DSC show that the rate of DMSO displacement affects the ordering of the recovered kaolinite. The crystallite size of the kaolinite is reduced from the raw to the recovered kaolinite after DMSO displacement, indicating an exfoliation of the kaolinite. From these results, it is found that the removal of the DMSO from the kaolinite–DMSO complex is influenced by solvent polarity. The higher the polarity, the greater the removal of the DMSO from the complex. Solvent polarity affects the rate of DMSO displacement, which influences the ordering of the recovered kaolinite. It is suggested that solvent polarity can be used to control the removal rate of DMSO, which may be key to the dispersion of the kaolinite platelets.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Limei Wang ◽  
Aihua He

Polypropylene (PP)/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR) spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that theαphase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA) examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC) scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.


2011 ◽  
Vol 471-472 ◽  
pp. 496-501 ◽  
Author(s):  
M.J. Adinoyi ◽  
Necar Merah ◽  
Zuhair M. Gasem ◽  
N. Al-Aqeeli

Epoxy-clay nanocomposites have recently gained considerable attention due to their interesting physical, thermal and mechanical properties. These properties, however, depend on a number of parameters such as the clay type, clay modifying agent, polymer matrix and the adopted mixing process. In the current work, epoxy-clay nanocomposites were prepared from Araldite GY6010 CRS and Nanomer I.30E nanoclay using different sonication (mixing) periods (5 to 60 minutes) and different concentrations of clay (2 to 5%wt). The effect of sonication time and clay loading on the tensile and hardness properties of the resulting nanocomposites were investigated. The results showed that the ultimate strength and fracture strain of the nanocomposites were below that of the neat epoxy, but the elastic modulus was generally enhanced by the addition of the nano-clay content. Increasing the sonication time enhanced the tensile strength on the expense of reducing the modulus of elasticity. Hardness of the nanocomposites did not show significant change with either the addition of clay or processing under different sonication times.


2013 ◽  
Vol 678 ◽  
pp. 258-262 ◽  
Author(s):  
Ragupathy Baby Suneetha ◽  
Chinnapiyan Vedhi

Aniline was polymerized with mmt (Montmorrillonite) by chemical oxidation method using potassium perdisulphate. The solubility of the chemically prepared polymer–clay nanocomposite was ascertained and it showed good solubility in DMSO and DMF. The Pani–mmt nanocomposites were characterized by UV–Vis, FTIR spectral studies. Amine vibration peak observed at 1593 cm-1 was shifted to lower wave numbers when the polymer–clay nanocomposites were formed. The X-ray diffraction studies revealed the formation of nano sized (26 nm) crystalline nanocomposite. SEM analysis showed mixed granular nature of the polymer–clay nanocomposite in which polymer was intercalated with the clay. EDAX analysis shows the presence of Na, Mg Al, Si, C and N. Cyclic Voltammetric studies exhibit good adherent behaviour on electrode surface at pH 1.0. It exhibited two oxidation peaks at 0.360V and 0.638V and two reduction peaks at 0.431V & 0.103V. Chronoamperometric and chronocoulometric studies were also carried out at inert as well as oxidation atmosphere.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2012 ◽  
Vol 8 ◽  
pp. 371-378 ◽  
Author(s):  
Katharina C Kress ◽  
Martin Kaller ◽  
Kirill V Axenov ◽  
Stefan Tussetschläger ◽  
Sabine Laschat

4-Cyano-1,1'-biphenyl derivatives bearing ω-hydroxyalkyl substituents were reacted with methyl 3-chloro-3-oxopropionate or cyanoacetic acid, giving liquid-crystalline linear malonates and cyanoacetates. These compounds formed monotropic nematic phases at 62 °C down to ambient temperature upon cooling from the isotropic liquid. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction (WAXS).


1990 ◽  
Vol 45 (7) ◽  
pp. 1084-1090 ◽  
Author(s):  
Klaus Praefcke ◽  
Bernd Kohne ◽  
Andreas Eckert ◽  
Joachim Hempel

Six S,S-dialkyl acetals 2a-f of inosose (1), tripodal in structure, have been synthesized, characterized and investigated by optical microscopy and differential scanning calorimetry (d.s.c.). The four S,S-acetals 2c-f with sufficiently long alkyl chains are thermotropic liquid crystalline; 2 e and 2 f are even dithermomesomorphic. Each of these four inosose derivatives 2c-f exhibits monotropically a most likely cubic mesophase (MI); in addition 2e and 2f show enantiotropically a hexagonal mesophase (Hx) with a non-covalent, supramolecular H-bridge architecture. Whereas the nature of the optically isotropic mesophase MI needs further clarification the stable high temperature mesophase Hx of 2 e and 2 f has been established by a miscibility test using a sugar S,S-dialkyl acetal also tripodal in structure and with a Hx phase proved by X-ray diffraction, but in contrast to 2 with an acyclic hydrophilic part. Similarities of structural features between the Hx-phases of 2e and 2f as well as of other thermotropic and lyotropic liquid crystal systems are discussed briefly.


2011 ◽  
Vol 55-57 ◽  
pp. 1588-1592
Author(s):  
Li Mei Wang

Clay was organically modified with one kind of ionic liquild. Organical clay obtained was used to prepare poly(propylene) (PP)/clay nanocomposites by solution blending. Flourier transform infrared (FTIR), wide-angle X-ray diffraction (XRD) and thermogravimetric analysis (TGA) revealed that the ionic liquild was loaded in the galleries of organically modified clay. TGA result show the thermal stability of organically modified clay was superior to clay. XRD patterns indicated that the d-spacing of clay layers increased to 2.96 nm from 1.22 nm of clay. XRD patterns of PP/clay nanocomposites show that clay layers were dispersed in PP matrix by nanometer size.


Sign in / Sign up

Export Citation Format

Share Document