Evaluation of Compaction Characteristics and Performance of Warm–Recycled Mix Asphalt

2011 ◽  
Vol 477 ◽  
pp. 23-29 ◽  
Author(s):  
Shi Fa Xu ◽  
Xiao Hui Luo ◽  
Jie Ji ◽  
Zhen Li

Warm-Recycled Mix Asphalt (WRMA) is a new type mixture that can not only reduces the mixing temperature and exhausting gas emissions but also includes some waste materials (Reclaimed Asphalt Pavement, RAP).The compaction characteristics of WRMA were tested, while the compaction temperatures were 140°C, 130°C, 120°C, 110°C, 100°C and the RAP contents were 0%, 15%, 30%, 45%, and 60%, respectively. The compaction temperature for each WRMA was recommended according to the test results. Furthermore, this paper also evaluated the performances of each WRMA.

2020 ◽  
Vol 12 (16) ◽  
pp. 6410
Author(s):  
Alejandra T. Calabi-Floody ◽  
Gonzalo A. Valdés-Vidal ◽  
Elsa Sanchez-Alonso ◽  
Luis A. Mardones-Parra

Asphalt mixture is the most widely used material in road construction, and the industry is developing more sustainable technologies. Warm mix asphalt (WMA) is a promising alternative as it saves energy, reduces fuel consumption and generates fewer gas and fume emissions, while maintaining a similar performance to hot mix asphalt (HMA). This paper presents an evaluation of the gas emissions at laboratory scale, as well as the energy consumption and production costs, of five types of WMA with the addition of natural zeolite. The control mixture was a HMA manufactured at 155 °C. The mixtures evaluated were two WMA manufactured at 135 °C with 0.3% and 0.6% natural zeolite, and three WMA with partial replacement of raw materials by 10%, 20% and 30% of reclaimed asphalt pavement (RAP); these mixtures, called WMA–RAP, were manufactured at 125 °C, 135 °C and 145 °C, respectively. The results indicated that all the mixtures evaluated reduced CO and CO2 emissions by 2–6% and 17–37%, respectively. The energy consumption presented a 13% decrease. In the current situation, the production costs for WMA with 0.3 and 0.6% natural zeolite are slightly higher than the control mixture, because the saving achieved in fuel consumption is lower than the current cost of the additive. On the other hand, WMA manufactured with the addition of natural zeolite and RAP could produce cost savings of up to 25%, depending on the amounts of RAP and natural zeolite used.


2018 ◽  
Vol 162 ◽  
pp. 01037 ◽  
Author(s):  
Karim Al helo ◽  
Zaynab Qasim ◽  
Ahmed Majeed

This paper presented the effect of addition of Reclaimed Asphalt Pavement (RAP) on performance of mixture with (20%, 30%, 40% and 50%) RAP as proportion of asphalt mix. To compare with virgin mixture marshall flow and stability test was used to evaluated durability performance with (0,1,3, and 7) days immersion and Wheel Truck test was used to evaluated the resist to rutting. The best gradation and optimum asphalt content was selected according to Superpave system. Superpave Gyratory Compactor (SGC) was used to compact mixture with 100-mm diameter. The test results indicated that addition of RAP to mixes showed significant increase on resistance of Durability and Rutting.


2012 ◽  
Vol 549 ◽  
pp. 715-719
Author(s):  
Shao Wen Du ◽  
Chao Fei Liu

In this paper, cement is used to stabilize reclaimed asphalt pavement materials (RAP) and original aggregate with the same gradation. Compressive strength, freezing-thawing resistance and fatigue life of cement recycled RAP mixture (CRAPM) and cement stabilize original aggregate mixture (CSAM) are evaluated. Test results indicate the compressive adhesive strength of cement-RAP is lower than cement-original aggregate. At the same gradation, RAP has negative effect on the freezing-thawing resistance of CRAPM, and can increase the fatigue life sensitive to stress level. Therefore, for using 100% RAP, it is necessary to increase the cement content to properly improve the strength and durability of RAPM in order to satisfy the specification of cement stabilized base materials in china.


2019 ◽  
Vol 278 ◽  
pp. 01012
Author(s):  
Raudhah ◽  
R. Jachrizal Sumabrata ◽  
Sigit Pranowo Hadiwardoyo

Reclaimed asphalt pavement (RAP) comprises removed pavement materials containing high-quality aggregates and asphalt which can be recycled as materials for new pavement construction. It is removed continually for reconstruction, resurfacing, and maintenance purposes, and if not recycled will become waste. This paper determines the influence of using different RAP percentages and asphalt content in warm mix asphalt on the Marshall test results for asphalt concrete binder course (AC-BC) using Retona Blend 55. The percentages of RAP are determined by analyzing the gradation of the existing aggregates in RAP and adding virgin aggregates so that it meets the standard gradation for AC-BC specified by the Ministry of Public Works and Housing. The RAP percentages in the asphalt mixes in this study are 35%, 45%, and 51.55% of total aggregates, while the asphalt contents are 5%, 6%, and 7% of the total mix. To determine the influence of RAP percentage and asphalt content, and to discover if there is any influence from the interaction between these two factors, the analysis is performed using a factorial design. The results of this study show that variation in RAP percentages in the mix has no significant influence on stability, flow, and Marshall quotient, but there is significant influence on void in mineral aggregates (VMA), void in mix (VIM), and void filled with asphalt (VFA). Correlations of 97.5%, 80%, and 95.1%, respectively show that increase in RAP percentage increases VMA and VIM and decreases VFA. The interaction between RAP percentage and asphalt content has no significant influence on Marshall test results.


2020 ◽  
Vol 82 (3) ◽  
Author(s):  
Abdalrhman Milad ◽  
Aizat Mohd Taib ◽  
Abobaker G. F Ahmeda ◽  
Mohmed Solla ◽  
Nur Izzi Md Yusoff

One of the most frequently used waste materials is reclaimed asphalt pavement (RAP). The use of RAP can help reduce the cost of a project and ensure that the project is eco-friendly. Therefore, the aim of this study is to give a detailed description of the production of RAP to ensure that the rehabilitation and maintenance of pavements as well as the construction of pavements are environmentally friendly and cost effective. Previous works have shown the benefits of using RAP with regard to its ability to produce equally good or even superior results compared to the use of virgin or original mixes if they are properly produced and applied. Among the benefits of RAP mixes are good moisture resistance and higher density. This review also demonstrate the critical importance of using RAP in asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document