Numerical and Experimental Analysis of Stress and Strains in Flat Ends of High-Pressure Vessels

2011 ◽  
Vol 490 ◽  
pp. 226-236 ◽  
Author(s):  
Bogdan Szybiński ◽  
Paweł Romanowicz ◽  
Andrzej P. Zieliński

Application of flat welded ends with stress relief grooves in high-pressure vessels is a common alternative to use of dished vessel ends. It is well established and follows calculation rules given in codes: EN-12952-3 [1], EN-13445-3 [2], or in ASME code [3]. However the calculation rules do not give any definite answer what should be the choice of parameters defining a circular stress relief groove, for example, position of the groove and its radius. Usually the choice of them relies on engineering practice. The present paper clearly shows the influence of this choice on stress concentration in the cylinder-endplate junction area. The results of numerical study are verified in experimental investigations performed for a cylindrical high-pressure vessel.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
R. D. Dixon ◽  
E. H. Perez

The available design formulas for flat heads and blind end closures in the ASME Code, Section VIII, Divisions 1 and 2 are based on bending theory and do not apply to the design of thick flat heads used in the design of high pressure vessels. This paper presents new design formulas for thickness requirements and determination of peak stresses and stress distributions for fatigue and fracture mechanics analyses in thick blind ends. The use of these proposed design formulas provide a more accurate determination of the required thickness and fatigue life of blind ends. The proposed design formulas are given in terms of the yield strength of the material and address the fatigue strength at the location of the maximum stress concentration factor. Introduction of these new formulas in a nonmandatory appendix of Section VIII, Division 3 is recommended after committee approval.


Author(s):  
Joseph E. D. Hess

Impulsively loaded pressure vessels are often closed using a bolted joint configured in a double staggered row pattern. The bolted joint design must maintain the placement of the vessel opening covers to support the structural integrity of the shell and also provide the necessary preload of sealing surfaces for leak prevention. Good design practice suggests configuring tensile loaded bolted joints with a double rows pattern in order to minimize prying against the bolt head induced by localized moments. Double bolt row patterns allow moments induced by load offsets to be reacted through contact of the faying surfaces of the bolted members and if separation occurs by differential axial loading of the two bolt rows. This acts to reduce direct prying of the mated members against the bolt heads. Material cost and operational time savings could be realized if a single bolt row design with acceptable performance was implemented. In this paper a detailed finite element model is described and calculation results are presented for two vessel configurations subjected to an impulsive load; a double staggered 64 bolt pattern and a single row 32 bolt pattern. Finite element results are compared to each other and to the rules of ASME Code Case 2564 in Section VIII, Division 3. Special attention is given to the loading induced in the bolts and to the relative deflection of faying surfaces containing seals. It will be shown that reducing the bolt count per opening from 64 to 32 results in increased peak response of the bolts, seal opening gaps, and shell. Nonetheless a single row bolt pattern does appear feasible and within the bounds of the Code Case.


1997 ◽  
Vol 119 (2) ◽  
pp. 161-166
Author(s):  
J. S. Porowski ◽  
W. J. O’Donnell ◽  
R. H. Reid

Within the last two decades, the use of elastic finite element analyses to demonstrate design compliance with the rules of the ASME Code has become a generally accepted engineering practice. Linearized stresses from these analyses are commonly used to evaluate primary stresses. For redundant structures or complex structural details, the use of such analyses, instead of simple equilibrium models, often results in significant overconservatism. Direct use of finite element results is often preferred because equilibrium solutions are not unique and effective equilibrium models are not easily constructed for complex three-dimensional structures. However, finite element analyses include secondary stresses, even for pressure, mechanical, and shock loading. For primary stress evaluation, the ASME Code allows the use of inelastic methods based on lower-bound solutions and plastic analysis. For primary stresses, the Code requires equilibrium to be satisfied without violating the yield strength of the material. The use of finite element inelastic analysis to partition mechanically induced stresses into the primary and secondary categories was introduced by Porowski et al. (1993). The latter provides a detailed discussion of the technical approach and the results for the axisymmetric junction between the plate and shell in a pressure vessel. This example was selected by the Session Organizer as a benchmark case to compare the efficiency of various analytical approaches presented at the Session. The authors have since used this approach to design more efficient structures. The practical application of this method to reduce the weight of complex redundant structures designed to meet primary stress limits is described herein for a more complex three-dimensional case. Plastic design utilizes the ability of actual materials to find the most efficient load distribution. A heat exchanger subjected to pressure, accelerations, and nozzle external loads is evaluated as a practical example. The results of elastic analyses are compared with those obtained by inelastic analyses. It is shown that inelastic analyses can be used effectively to reduce the weight of structures using only modern PCs for the engineering computations, as illustrated in this paper.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
M. T. Schobeiri ◽  
S. Abdelfattah

Improved computational fluid dynamics tools based on Reynolds-averaged Navier–Stokes (RANS) equations have shown that the behavior of simple flow cases can be predicted with a reasonable degree of accuracy. Their predictive capability, however, substantially diminishes whenever major secondary vortices, adverse pressure gradients, and wake-boundary layer interactions are present. Flow through high-pressure (HP) turbine components uniquely incorporates almost all of the above features, interacting with each other and determining the efficiency and performance of the turbine. Thus, the degree of accuracy of predicting the flow through a HP turbine can be viewed as an appropriate benchmark test for evaluating the predictive capability of any RANS-based method. Detailed numerical and experimental investigations of different HP turbines presented in this paper have revealed substantial differences between the experimental and the numerical results pertaining to the individual flow quantities. This paper aims at identifying the quantities whose simulation inaccuracies are pre-eminently responsible for the aforementioned differences. This task requires (a) a meticulous experimental investigation of all individual thermofluid quantities and their interactions resulting in an integral behavior of the turbomachine in terms of efficiency and performance, (b) a detailed numerical investigation using appropriate grid densities based on simulation sensitivity, and (c) steady and transient simulations to ensure their impact on the final numerical results. To perform the above experimental and numerical tasks, two different HP turbines were investigated: (1) a two-stage turbine with moderately compound-leaned stator blades and (2) a three-stage turbine rotor with compound-leaned stator and rotor blades. Both turbines have been thoroughly measured and numerically simulated using RANS and URANS. Detailed interstage radial and circumferential traversing presents a complete flow picture of the second stage. Performance measurements were carried out for design and off-design rotational speeds. For comparison with numerical simulations, the turbines were numerically modeled using a commercially available code. An extensive mesh sensitivity study was performed to achieve a grid-independent accuracy for both steady and transient analysis. Comparison of RANS/URANS results with the experimental ones revealed differences in total pressure for the two-stage turbine of up to 5%. A significantly lower difference of less than 0.2% is observed for the three-stage turbine with specially designed blades to suppress the secondary flow losses. Analyzing the physical background of a RANS-based solver, it was argued that the differences of individual quantities exhibited in the paper were attributed to the deficiencies in dissipation and transition models.


2013 ◽  
Vol 477-478 ◽  
pp. 49-53 ◽  
Author(s):  
Bogdan Szybiński

Flat ends in cylindrical pressure vessels are a certain alternative for commonly used in boilers dished ends. These ends can have different form and one of the admitted proposals is the plate with the internally introduced circumferential stress relief groove. In codes [1, the grooves of circular shape are recommended. Three parameters describe the groove configuration, namely the groove radius, the minimum endplate thickness under the relief groove and the chamfer angle. The respective formulas for calculations of the first two parameters are expressed in the form of inequalities. This means that a certain range of their variation is possible. The existing codes do not give the clear suggestion about the optimal choice of values of the groove parameters, leading to the minimal value of the stress concentration in the groove area. This is usually done by numerical analysis. The significant reduction of stress concentration is observed when changing the shape of the groove from the circular to the elliptical one, which is also shown in the paper.


Author(s):  
Susumu Terada ◽  
Masato Yamada ◽  
Tomoaki Nakanishi

9Cr-1Mo-V steels (Gr. 91), which has an excellent performance at high temperature in mechanical properties and hydrogen resistance, has been used for tubing and piping materials in power industries and it can be a candidate material for high pressure vessels for high temperature processes in refining industries. The current Section VIII Division 2 of ASME code does not permit method A of paragraph 5.5.2.3 to be used for the exemption from fatigue analysis for Gr. 91 steels due to limitation of specified minimum tensile strength (585 MPa > 552 MPa). Method B of paragraph 5.5.2.4 also can’t be used because it requires the use of the fatigue curve which is limited to 371 °C lower than the needed temperature. Therefore new rules for fatigue evaluation of Gr. 91 steels at temperatures greater than 371 °C and less than 500 °C similar to CC 2605 for 2.25Cr-1Mo-0.25V(Gr. 22V) steels are necessary. This paper provides fatigue test results at 500 °C for Gr. 91 steels, the modification of CC 2605, sample inelastic analysis results for nozzles. Then, the new Code Case for Gr. 91 steels is proposed from these results.


2021 ◽  
Vol 11 (24) ◽  
pp. 12162
Author(s):  
Žilvinas Bazaras ◽  
Mindaugas Leonavičius ◽  
Vaidas Lukoševičius ◽  
Laurencas Raslavičius

The article deals with the determination of the resistance to cyclic loading of the threaded joints of pressure vessels and defective elements according to the failure mechanics criteria. Theoretical and experimental studies do not provide a sufficient basis for the existing calculation methods for the cyclic strength of the threaded joints of pressure vessels. The short crack kinetics in the threaded joints, a shakedown in one of the joint elements of pressure vessels, i.e., in the bolt or stud, has not been studied sufficiently. The calculation methods designed and improved within the study were based on theoretical and experimental investigations and were simplified for convenient application to engineering practice. The findings could be used to investigate the shakedown of studs of a different cross-section with an initiating and propagating crack. Value: the developed model for the assessment of durability of the threaded joints covers the patterns of resistance to cyclic failure (limit states: crack initiation, propagation, final failure) and shakedown (limit states: progressive shape change and plastic failure). Analysis-based solutions of plastic failure conditions and progressive shape change were accurate (the result was reached using a two-sided approach; the solutions were obtained in view of the parameters of the cyclic failure process in the stud (bolt) and based on experimental investigations of the threaded joints).


2010 ◽  
Vol 102-104 ◽  
pp. 297-300
Author(s):  
Ning Huang ◽  
Ming Hui Huang ◽  
Li Hua Zhan

The purpose of the present study is to propose a new technical method for improving the fatigue life of a panel with big grooves by setting rounded transition structure and stress relief slots in the vicinity of it. The main idea of the method is to reduce the stress concentration at the edges of rounded transition structure. To confirm the effectiveness of the method, analyses were performed by using software for two-dimensional elastic problems based on the body-force method. The calculation results show that the existence of stress relief slots effectively reduced the stress concentration at the edges of rounded transition structure. A close distance between the rounded transition structure and the stress relief groove resulted in a little influence of stress concentration at the edge of rounded transition structure. Also, a lower stress concentration was obtained by increasing the diameter and numbers of stress relief grooves. Results prove the effectiveness and certain engineering practicability of this method. The method is helpful for structure design.


Author(s):  
Robert E. Nickell ◽  
Thomas A. Duffey ◽  
Edward A. Rodriguez

Ductile failure criteria suitable for application to impulsively loaded high pressure vessels that are designed to the rules of the ASME Code Section VIII Division 3 are described and justified. The criteria are based upon prevention of load instability and the associated global failure mechanisms, and on protection against progressive distortion for multiple-use vessels. The criteria are demonstrated by the design and analysis of vessels that contain high explosive charges.


Sign in / Sign up

Export Citation Format

Share Document