Estimation of the Grinding Time by Means of the Grinding Process Model

2012 ◽  
Vol 565 ◽  
pp. 52-57 ◽  
Author(s):  
Takazo Yamada ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In grinding operation, elastic deformations of the grinding machine and the grinding wheel induce a residual stock removal of workpiece. On the other hand, thermal expansions of the workpiece and the grinding wheel increase the depth of cut. Therefore, calculation of a ground depth of cut and/or the grinding time has to be considered by the elastic deformations and the thermal expansions. From such a viewpoint, in this study, grinding process model taking into account the elastic deformations and the thermal expansions was proposed. This paper aims to estimate the grinding time by means of the proposed grinding process model.

2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


2014 ◽  
Vol 1017 ◽  
pp. 72-77
Author(s):  
Takazo Yamada ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In the grinding process, due to the elastic deformations of grinding machine and grinding wheel, the ground depth of cut is smaller than the applied depth of cut. Consequently, the ground depth of cut has to be controlled in spark-out grinding process. However, the cycle time in spark-out grinding process is not easy to be estimated. From such a viewpoint, in this study, using specific grinding force obtained by measured grinding force in the first spark-out pass, a calculating method of the real ground depth in continuous pass process is proposed. And, this method is experimentally evaluated.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

This article presents a new model of the flat surface grinding process vibration conditions. The study establishes a particular analysis and comparison between the influence of the normal and tangential components of grinding forces on the vibration conditions of the process. The bifurcation diagrams are used to examine the process vibration conditions for the depth of cut and the cutting speed as the bifurcation parameters. The workpiece is considered to be rigid and the grinding wheel is modeled as a nonlinear two-degrees-of-freedom mass-spring-damper oscillator. To verify the model, experiments are carried out to analyze in the frequency domain the normal and tangential dynamic grinding forces. The results of the process model simulation show that the vibration condition is more affected by the normal component than the tangential component of the grinding forces. The results of the tested experimental conditions indicate that the cutting speed of 30 m/s can permit grinding at the depth of cut up to 0.02 mm without sacrificing the process of vibration behavior.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


1999 ◽  
Vol 122 (1) ◽  
pp. 59-69 ◽  
Author(s):  
William L. Cooper ◽  
Adrienne S. Lavine

The present work developed numerical codes that simulate steady-state grinding process kinematics. The three-dimensional modeling procedure entails the following: specifying the sizes, shapes, and positions of individual abrasive grains on the wheel surface; geometrically calculating the abrasive grains’ depth of cut distributions along the grinding zone as they pass through the grinding zone (neglecting wheel, abrasive grain, and workpiece deflections); using an empirical relationship to relate the abrasive grains’ geometric depths of cut to the grains’ actual depths of cut; and updating the workpiece surface to account for material removal. The resulting data include the abrasive grains’ average depth of cut distribution along the grinding zone, stock removal depth, stock removal rate, grinding zone shape, grinding zone length, percentage of grains impacting the workpiece, grain-workpiece impact frequency, etc. The calculated grinding zone lengths compare favorably with experimental data. This article examines a number of steady-state grinding processes. [S1087-1357(00)00101-5]


2015 ◽  
Vol 68 (2) ◽  
pp. 229-238
Author(s):  
Hamilton Jose de Mello ◽  
Diego Rafael de Mello ◽  
Eduardo Carlos Bianchi ◽  
Paulo Roberto de Aguiar ◽  
Doriana M. D'Addona

AbstractThere has been a great advance in the grinding process by the development of dressing, lubri-refrigeration and other methods. Nevertheless, all of these advances were gained only for continuous cutting; in other words, the ground workpiece profile remains unchanged. Hence, it becomes necessary to study grinding process using intermittent cutting (grooved workpiece – discontinuous cutting), as little or no knowledge and studies have been developed for this purpose, since there is nothing found in formal literature, except for grooved grinding wheels. During the grinding process, heat generated in the cutting zone is extremely high. Therefore, plenty of cutting fluids are essential to cool not only the workpiece but also the grinding wheel, improving the grinding process. In this paper, grinding trials were performed using a conventional aluminum oxide grinding wheel, testing samples made of AISI 4340 steel quenched and tempered with 2, 6, and 12 grooves. The cylindrical plunge grinding was performed by rotating the workpiece on the grinding wheel. This plunge movement was made at three different speeds. From the obtained results, it can be observed that roughness tended to increase for testing sample with the same number of grooves, as rotation speed increased. Roundness error also tended to increase as the speed rotation process got higher for testing the sample with the same number of grooves. Grinding wheel wear enhanced as rotation speed and number of grooves increased. Power consumed by the grinding machine was inversely proportional to the number of grooves. Subsuperficial microhardness had no significant change. Micrographs reveal an optimal machining operation as there was no significant damage on the machined surface.


2014 ◽  
Vol 575 ◽  
pp. 121-127
Author(s):  
Shinn Liang Chang ◽  
Dai Jia Juan ◽  
Bean Yin Lee ◽  
You Jhih Lin

Grinding technology is used in this study to overcome the hard machining of ceramic with hard and brittle characteristics. The grinding machine with diamond grain size 25 and 5 , spindles speed 1720 rpm and 3450 rpm are applied. Combining the unintentional roll clamp and the grinding machine, ceramic rods can be ground to the desired size.In the research, surface profilometer is applied to measure the rod surface roughness of processing results under different conditions. The results show that the grinding wheel with finer particle, the roughness of the ground ceramic rod will be better. While the rotation speed of grinding wheel is increased, the surface roughness will have the same trend.


2005 ◽  
Vol 291-292 ◽  
pp. 189-194 ◽  
Author(s):  
Eun Sang Lee ◽  
Y.-J. Chun ◽  
Nam Kyung Kim

The optimum condition selection of rotary dressing operations using Hall and AE sensor is presented. The acquired current signals from a hall sensor were studied as one of the method to obtain the optimum condition of dressing and the correlations between dressing condition and AE signals were also evaluated with the root mean square (RMS). Dressing operation was performed to investigate the effects of depth of cut, rotating speed and coolant. In order to verify the optimum condition of dressing, AE and hall sensor signals were compared in RMS with the surface micrograph of grinding wheel. This verification experiment demonstrates the effective dressing condition selection for centerless grinding.


2022 ◽  
pp. 93-102
Author(s):  
Do Duc Trung ◽  
Le Dang Ha

In this article, a study on intermittent surface grinding using aluminum oxide grinding wheel with ceramic binder is presented. The testing material is 20XH3A steel (GOST standard – Russian Federation). The testing sample has been sawn 6 grooves, with the width of each groove of 10 mm, the grooves are evenly distributed on the circumference of sample. The testing sample resembles a splined shaft. An experimental matrix of nine experiments has been built by Taguchi method, in which abrasive grain size, workpiece speed, feed rate and depth of cut were selected as input variables. At each experiment, surface roughness (Ra) and roundness error (RE) have been measured. Experimental results show that the aluminum oxide and ceramic binder grinding wheels are perfectly suitable for grinding intermittent surface of 20XH3A steel. Data Envelopment Analysis based Ranking (DEAR) method has been used to solve the multi-objective optimization problem. The results also showed that in order to simultaneously ensure minimum surface roughness and RE, abrasive grain size is 80 mesh, workpiece speed is 910 rpm, feed rate is 0.05 mm/rev and depth of cut is 0.01 mm. If evaluating the grinding process through two criteria including surface roughness and RE, depth of cut is the parameter having the greatest effect on the grinding process, followed by the influence of feed rate, workpiece speed, and abrasive grain is the parameter having the least effect on the grinding process. In addition, the effect of each input parameter on each output parameter has also been analyzed, and orientations for further works have also been recommended in this article


2018 ◽  
Vol 249 ◽  
pp. 03003 ◽  
Author(s):  
M A Aulestia Viera ◽  
F A Alexandre ◽  
P R Aguiar ◽  
R B Silva ◽  
E C Bianchi

The study and monitoring of the workpiece surface roughness is one of the most important parameters of the grinding process. This paper proposes a method for analysing the surface condition of ground ceramic components by means of the acoustic emission (AE) signal analysis along with frequency domain techniques. Tests were performed using a surface-grinding machine equipped with a resin-bond diamond grinding wheel, where signals were collected at 2 MHz. Alumina workpieces were machined under six different depth of cut values, covering slight, medium and severe grinding conditions. Frequency content was studied in order to select bands closely related to the process conditions. An analysis of the root mean square values (RMS) of the signals was performed, seeking for a correlation with the surface roughness. Digital filters were applied to the raw signals. The RMS values filtered for two frequency bands presented a better fitting to the linear regression, which is highly desirable for setting a threshold to detect the workpiece surface conditions and implementing into a monitoring system. Results showed that the amplitude of the signals presented different characteristics in the frequency domain according to the workpiece surface condition. It was also observed a higher spectral activity in the severe grinding conditions.


Sign in / Sign up

Export Citation Format

Share Document