Effect of MgO and NH4OH on Formation of 5Mg(OH)2·MgSO4·3H2O Whiskers

2012 ◽  
Vol 512-515 ◽  
pp. 91-94 ◽  
Author(s):  
Ri Yu ◽  
Jae Hwan Pee ◽  
Hyung Tae Kim ◽  
Kyung Ja Kim ◽  
Young Woong Kim ◽  
...  

The Magnesium hydroxide sulfate hydrate whiskers (5Mg(OH)2.MgSO4.3H2O, abbreviated 513MHSH) have attracted much attention due to its practical applications as filler and reinforcement. However, it is difficult to produce high quality MHSH because plate-like Mg(OH)2 impurities were formed in high concentrations of OH- and interaction between Mg2+ and OH-. In this work, to reduce formation Mg(OH)2, molar ratio ofSuperscript text magnesium oxide (MgO) and magnesium sulfate (MgSO4.7H2O) were controlled. As a result, when low concentration of SO42-, MHSH whiskers co-existed with hexagonal plate Mg(OH)2. The molar ratio of MgSO4.7H2O/MgO was high, uniform MHSH whiskers were formed without Mg(OH)2. In addition, appropriate amount of NH4OH has affected formation of high quality MHSH. Their morphologies and structures were determined by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) and thermo-gravimetric analyzer (TGA)

2014 ◽  
Vol 875-877 ◽  
pp. 313-317 ◽  
Author(s):  
Dang Ni Gao ◽  
Z.J. Li ◽  
H.W. Guo ◽  
X.F. Wang

Pure eulytite Bi4(SiO4)3crystals were prepared by high temperature melt cooling method using Bi2O3and SiO2as starting materials. In this study, the properties of the samples were characterized by thermo gravimetric (TG),differential scanning calorimeter (DSC), field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The results showed that eulytite Bi4(SiO4)3was crystallized when high temperature glass-melt were cooled to 943°C and obvious exothermal peak is shown on the DSC curve; and pure eulytite Bi4(SiO4)3crystals were synthesized by keeping the processing temperature for 8 hours. Bi4(SiO4)3grains grew larger and the amount of vacancy increased along with the extension of holding time, while Bi4(SiO4)3grains still presented a structure of partial ordering. Eulytite Bi4(SiO4)3prepared through melt-cooling method is of high purity and good stability, and can be applied as starting materials of preparation of Bi4(SiO4)3thin film and high quality Bi4(SiO4)3macrocrystal.


2003 ◽  
Vol 67 (6) ◽  
pp. 1243-1251 ◽  
Author(s):  
A. Lu ◽  
D. Zhao ◽  
J. Li ◽  
C. Wang ◽  
S. Qin

AbstractSmall domestic cooking furnaces are widely used in China. These cooking furnaces release SO2 gas and dust into the atmosphere and cause serious air pollution. Experiments were conducted to investigate the effects of vermiculite, limestone or CaCO3, and combustion temperature and time on desulphurization and dust removal during briquette combustion in small domestic cooking furnaces. Additives used in the coal are vermiculite, CaCO3 and bentonite. Vermiculite is used for its expansion property to improve the contact between CaCO3 and SO2 and to convey O2 into the interior of briquette; CaCO3 is used as a chemical reactant to react with SO2 to form CaSO4; and bentonite is used to develop briquette strength. Expansion of vermiculite develops loose interior structures, such as pores or cracks, inside the briquette, and thus brings enough oxygen for combustion and sulphation reaction. Effective combustion of the original carbon reduces amounts of dust in the fly ash. X-ray diffraction, optical microscopy, and scanning electron microscopy with energy dispersive X-ray analysis show that S exists in the ash only as anhydrite CaSO4, a product of SO2 reacting with CaCO3 and O2. The formation of CaSO4 effectively reduces or eliminates SO2 emission from coal combustion. The major factors controlling S retention are vermiculite, CaCO3 and combustion temperature. The S retention ratio increases with increasing vermiculite amount at 950°C. The S retention ratio also increases with increasing Ca/S molar ratio, and the best Ca/S ratio is 2-3 for most combustion. With 12 g of the original coal, 1 to 2 g of vermiculite, a molar Ca/S ratio of 2.55 by adding CaCO3, and some bentonite, a S retention ratio >65% can be readily achieved. The highest S retention ratio of 97.9% is achieved at 950°C with addition of 2 g of vermiculite, a Ca/S ratio of 2.55 and bentonite.


Author(s):  
How Wei Benjamin Teo ◽  
Anutosh Chakraborty ◽  
Kim Tiow Ooi

As promising material for gas storage applications, MIL-101(Cr) can further be modified by doping with alkali metal (Li+, Na+, K+) ions. However, the doping concentration should be optimized below 10% to improve the methane adsorption. This article presents (i) the synthesis of MIL-101 (Cr) Metal Organic Frameworks, (ii) the characterization of the proposed doped adsorbent materials by X-ray Diffraction, Scanning Electron Microscopy, N2 Adsorption, Thermo-Gravimetric Analyzer, and (iii) the measurements of methane uptakes for the temperatures ranging from 125 K to 303 K and pressures up to 10 bar. It is found that the Na+ doped MIL-101(Cr) exhibits CH4 uptake capacity of (i) 295 cm3/cm3 at 10 bar and 160 K and (ii) 95 cm3/cm3 at 10 bar at 298 K. This information is important to design adsorbed natural gas (ANG) storage tank under ANG-LNG (liquefied natural gas) coupling conditions.


2021 ◽  
Vol 72 (3) ◽  
pp. 89-101
Author(s):  
Guowei Zeng ◽  
Guihong Wu ◽  
Zhihui Wang ◽  
Xiaonan Li ◽  
Jie Yang ◽  
...  

In this work, K7PW11O39 (abbreviated as PW11) was immobilized on ZrO2 nanofibers and used as an efficient recyclable catalyst in extraction catalytic oxidation desulfurization system (ECODS).The 500 ppm DBT model oil(5mL) can desulphurize completely within 20 min with the catalytic conditions of 50��, 0.010 g 50 wt%- CTAB�C PW11�CZrO2 nanofibers and O/S molar ratio H2O2/DBT molar ratio�� was 2:1. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and thermo gravimetric analyzer (TGA). The results indicated the PW11�CZrO2 nanofibers were synthesized successfully and the possible catalytic mechanism is also revealed.


2019 ◽  
Vol 966 ◽  
pp. 200-203
Author(s):  
Zaenal Arifin ◽  
Triwikantoro ◽  
Bintoro Anang Subagyo ◽  
Mochamad Zainuri ◽  
Darminto

Abstract. In this study, the CaCO3 powder has been successfully synthesized by mixing CaCl2 from natural limestone and Na2CO3 in the same molar ratio. The mixing process of solutions was carried out by employing the molar contents of 0.125, 0.25, 0.375 and 0.5M at varying temperatures of 30, 40, 60 and 80ᴼC. The produced CaCO3 microparticles were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The highest content of aragonite phase with morphology rod-like of the samples is around 29 wt%, resulting from the process using solution of 0.125 M at 80 ᴼC. While at 30 ᴼC and 40 ᴼC produced 100 wt% calcite phase.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1150 ◽  
Author(s):  
Jinxin Liu ◽  
Lanqing Yu ◽  
Min Deng

The aim of this research is to investigate the effect of LiNO3 on the alkali–silica reaction (ASR) expansion of reactive sandstone and the mechanism through which this occurs. This paper presents the results from tests carried out on rock prisms and concrete microbars prepared by sandstone and LiNO3. The findings show that LiNO3 does not decrease the expansion of these samples unless the molar ratio of [Li]/[Na + K] exceeds 1.66, and the expansion is greatly increased when its concentration is below this critical concentration. The expansion stress test proves that Li2SiO3 is obviously expansive. X-ray diffraction (XRD) and scanning electron microscope (SEM) results indicate that LiNO3 reacts with the microcrystalline quartz inside sandstone, inhibiting the formation of ASR gel, and the formation of Li2SiO3 causes larger expansion. A high concentration of LiNO3 might inhibit the ASR reaction in the early stages, and the formation of Li2SiO3 causes expansion and cracks in concrete after a long period of time.


2003 ◽  
Vol 18 (6) ◽  
pp. 1325-1332 ◽  
Author(s):  
B. Robertz ◽  
F. Boschini ◽  
A. Rulmont ◽  
R. Cloots ◽  
I. Vandriessche ◽  
...  

The potential use of barium zirconate for the manufacture of corrosion-resistant substrates emphasizes the need for a simple, inexpensive, and easily scalable process to produce high-quality powders with well-controlled composition and properties. However, the classical solid-state preparation of barium zirconate leads to an inhomogeneous powder unsuitable for applications in highly corrosive environment. For this paper, the possibility to use the spray-drying technique for the preparation of BaZrO3 powders with a controlled size distribution and morphology was investigated. The influence of the nature and concentration of the precursor solution and the influence of the spray-drying step are discussed on the basis of x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and dilatometric measurements.


2015 ◽  
Vol 659 ◽  
pp. 121-126 ◽  
Author(s):  
Pat Sooksaen

Aluminium borate nanowhiskers with varying aspect ratio were synthesized via sol–gel synthesis. The morphology of aluminum borate (Al4B2O9 and Al18B4O33) nanowhiskers could be controlled by varying the aluminum to boron (Al:B) molar ratio in the sol–gel derived precursors. Sintering temperatures (850 and 1100°C) and sintering times (4 and 32 hours) also affected the phase composition and size of the nanowhiskers. Citric acid was also added in the sol–gel derived precursors as a surface stabilizer for obtaining uniform finely dispersed nanostructures. Fine nanowhiskers were obtained by the calcination at 850°C, whereas higher temperature of 1100°C led to thicker and longer nanowhiskers and became rod-like crystals. The morphology and phase composition were investigated by field emission scanning electron microscope and X-ray diffraction. Chemical bond vibrations in the synthesized nanowhiskers were investigated by Fourier-transform infrared spectroscopy.


2008 ◽  
Vol 368-372 ◽  
pp. 995-997
Author(s):  
Cui Wei Li ◽  
Hong Xiang Zhai ◽  
Yang Zhou ◽  
Shi Bo Li ◽  
Zhi Li Zhang

In this study, free Ti/Si/Al/C powder mixtures with molar ratio of 3:0.4:0.8:1.8 were heated in Argon with various schedules, in order to reveal the possibility for the synthesis of Ti3Si0.4Al0.8C1.8 solid solution powder. X-ray diffraction (XRD) was used for the evaluation of phase identities of the powder after different treatments. Scanning electron microscopy (SEM) was used to observe the morphology of the Ti3Si0.4Al0.8C1.8 solid solution. XRD results showed that predominantly single phase samples of Ti3Si0.4Al0.8C1.8 was prepared after heating at 1400oC for 5 min in Argon and the lattice parameters of Ti3Si0.4Al0.8C1.8 lay between those of Ti3SiC2 and Ti3AlC2.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
P. V. Seredin

We investigated MOCVD epitaxial heterostructures based on AlxGa1−xAs ternary solid solutions, obtained in the range of compositions x~0.20–0.50 and doped with high concentrations of phosphorus and silicon atoms. Using the methods of high-resolution X-ray diffraction, scanning electron microscopy, X-ray microanalysis, Raman spectroscopy, and photoluminescence spectroscopy we have shown that grown epitaxial films represent five-component (AlxGa1−xAs1−yPy)1−zSiz solid solutions. The implementation of silicon in solid solution with a concentration of ~ 0.01 at.% leads to the formation of the structure with deep levels, DX centers, the occurrence of which fundamentally affects the energy characteristics of received materials.


Sign in / Sign up

Export Citation Format

Share Document