Shake Table Test of a Bamboo Frame Structure

2012 ◽  
Vol 517 ◽  
pp. 217-221
Author(s):  
Jin Zhu ◽  
Qing Fang Lv

Modern bamboo engineering material is a new fast-renewable green building material with light weight and high strength. Bamboo structure made of this material is a new structural system in China so far. A shake table test on a 1/3 scale model of a two-storey bamboo-frame pilot project were conducted, in which its dynamic responses including acceleration and relative interstory drift were tested. Finite element simulation was applied into structural analysis as well. The results indicate that this structure has satisfactory aseismatic property. Based on the results, some suggestions are put forward on aseismatic design and construction measures of bamboo frame structure.

2012 ◽  
Vol 446-449 ◽  
pp. 3889-3893
Author(s):  
Bin Zhao ◽  
Juan He ◽  
Hui Gao ◽  
Xu Gang Chen

For many high-rising buildings, large local space is very useful for its special function needs, such as conference hall and hotel lobby. The shake table test results of a high-rising building with large local space show that the dynamic characteristics of such structure are complex and the torsional mode becomes the first mode, while the torsional responses under earthquake excitation, especially of the floor just above the large local space, are very remarkable. In this paper, the bidirectional Tuned Mass Damper (TMD) is employed for reducing the torsional vibration of such complex high-rise building structure. A reduced-scale model is design and constructed. A series of shake table tests are carried out and the test results indicate that the TMD system is very effective in torsional vibration control of structural system.


2017 ◽  
Vol 12 (5) ◽  
pp. 868-881
Author(s):  
Yohsuke Kawamata ◽  
Manabu Nakayama ◽  
Ikuo Towhata ◽  
Susumu Yasuda ◽  
◽  
...  

Underground structures are generally considered to have high seismic performance and expected to play an important role as a base for reconstruction even after a destructive earthquake. Rigidity changing points, such as jointed and curved portions of underground structure, where localized deformation and stress is supposed to be generated, are ones of the most critical portions in terms of seismic performance of underground structure. Because the underground structure in a mega-city functions as a network, local damage could lead to fatal dysfunction. Accordingly, rigidity changing points and their surrounding area could significantly influence the resiliency of urban functions, and it is indispensable to evaluate their seismic performance and dynamic responses during earthquakes. The responses of rigidity changing points and their surrounding area to earthquakes have been tried evaluating by using large-scale numerical analyses, there is no case available where the responses have been measured in detail. For this reason, it is difficult to verify the validity of the results of such evaluations.In light of the above, the shake table test was conducted at E-Defense using a coupled specimen of soil and underground structures to obtain detailed data, especially on the localized responses around rigidity changing points during the earthquake. Based on the data obtained, the behavior of the underground structure with a curved portion at the time of an earthquake was analyzed comprehensively. As a result of the analysis on the test data, it is found that there is a strong correlation between the localized deformation of the curved portion of the tunnel and the displacement of the surrounding ground. In addition, it is necessary to conduct a three-dimensional seismic response analysis not only around the rigidity changing point but also in wider area.


2019 ◽  
Vol 14 (9) ◽  
pp. 1154-1169
Author(s):  
Hiroshi Nakazawa ◽  
Kazuya Usukura ◽  
Tadashi Hara ◽  
Daisuke Suetsugu ◽  
Kentaro Kuribayashi ◽  
...  

The earthquake (Mw 7.3) that struck Nepal on April 25, 2015 caused damage to many civil engineering and architectural structures. While several road gabion retaining walls in mountainous regions incurred damage, there was very little information that could be used to draw up earthquake countermeasures in Nepal, because there have been few construction cases or case studies of gabion structures, nor have there been experimental or analytical studies on their earthquake resistance. Therefore, we conducted a shake table test using a full-scale gabion retaining wall to evaluate earthquake resistance. From the experiments, it was found that although gabion retaining walls display a flexible structure and deform easily due to the soil pressure of the backfill, they are resilient structures that tend to resist collapse. Yet, because retaining walls are assumed to be rigid bodies in the conventional stability computations used to design them, the characteristics of gabions as flexible structures are not taken advantage of. In this study, we propose an approach to designing gabion retaining walls by comparing the active collapse surface estimated by the trial wedge method, and the experiment results obtained from a full-scale model of a vertically-stacked wall, which is a structure employed in Nepal that is vulnerable to earthquake damage. When the base of the estimated slip line was raised for the trial wedge method, its height was found to be in rough agreement with the depth at which the gabion retaining wall deformed drastically in the experiment. Thus, we were able to demonstrate the development of a method for evaluating the seismic stability of gabion retaining walls that takes into consideration their flexibility by adjusting the base of the trial soil wedge.


2012 ◽  
Vol 204-208 ◽  
pp. 2590-2594
Author(s):  
Bin Zhao ◽  
Juan He

In this research, a reduced scale model of the composite high-rise building with steel reinforced concrete column, steel beam and reinforced concrete core tube was designed and tested by using the shake table test technology. The acceleration and displacement of the model were measured during the tests. The cracking pattern and failure mechanism were illustrated. Above the shake table test, the finite element analysis of the test mode was carried out. The main effort of the numerical analysis was focused on the selection of the nonlinear models. Based on the experiment results and the strategy of considering nonlinear property of the beam-column joint and the short beam of the concrete core wall were proposed. It is proved that the proposed strategy is effective and economical for seismic behavior assessment of such composite high-rise building structure system.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2589
Author(s):  
Jung J. Kim

This study presents an explosion-resistant hybrid system containing a steel slab and a carbon fiber-reinforced polymer (CFRP) frame. CFRP, which is a high-strength material, acts as an impact reflection part. Steel slab, which is a high-ductility material, plays a role as an impact energy absorption part. Based on the elastoplastic behavior of steel, a numerical model is proposed to simulate the dynamic responses of the hybrid system under the air pressure from an explosion. Based on this, a case study is conducted to analyze and identify the optimal design of the proposed hybrid system, which is subjected to an impact load condition. The observations from the case study show the optimal thicknesses of 8.2 and 7 mm for a steel slab and a ϕ100 mm CFRP pipe for the hybrid system, respectively. In addition, the ability of the proposed hybrid system to resist an uncertain explosion is demonstrated in the case study based on the reliability methodology.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yiwei Lu ◽  
Hanlong Liu ◽  
Changjie Zheng ◽  
Xuanming Ding

X-section cast-in-place concrete pile is a new type of foundation reinforcement technique featured by the X-shaped cross-section. Compared with a traditional circular pile, an X-section pile with the same cross-sectional area has larger side resistance due to its larger cross-sectional perimeter. The behavior of static loaded X-section pile has been extensively reported, while little attention has been paid to the dynamic characteristics of X-section pile. This paper introduced a large-scale model test for an X-section pile and a circular pile with the same cross-sectional area subjected to cyclic axial load in sand. The experimental results demonstrated that cyclic axial load contributed to the degradation of shaft friction and pile head stiffness. The dynamic responses of X-section pile were determined by loading frequency and loading amplitude. Furthermore, comparative analysis between the X-section pile and the circular pile revealed that the X-section pile can improve the shaft friction and reduce the cumulative settlement under cyclic loading. Static load test was carried out prior to the vibration tests to investigate the ultimate bearing capacity of test piles. This study was expected to provide a reasonable reference for further studies on the dynamic responses of X-section piles in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document