Investigation of Cutting Phenomena in High Speed Ultrasonic Turning

2012 ◽  
Vol 523-524 ◽  
pp. 209-214 ◽  
Author(s):  
Keisuke Hara ◽  
Daisuke Hashikai ◽  
Hiromi Isobe ◽  
Jun Ishimatsu ◽  
Yoshihiro Take ◽  
...  

This study investigated phenomena of ultrasonic cutting in case of high speed conditions. Ultrasonically assisted cutting techniques were developed by Kumabe in 1950’s. He found “critical cutting speed” that limits cutting speed to obtain ultrasonically assisted effects and is calculated by frequency and amplitude of oscillation. In general, ultrasonically assisted cutting is not suitable for high speed cutting conditions because the effects of ultrasonically applying are canceled due to tool contacts with workpiece during cutting operation. Present ultrasonically assisted cutting cannot increase cutting speed because cutting speed is limited by above reason. And ultrasonically assisted cutting cannot improve productivity due to long processing time. We conducted high speed ultrasonic cutting, maximum cutting speed of this research was 160m/min which is higher than general critical cutting speed. Workpiece material is JIS SUS304 stainless steed and cemented carbide tool inserts were employed in this research. In ordinary cutting, generate terrible built up edge on to tool rake face. In case of low amplitude ultrasonic cutting, tool rake face hasn’t built up edge and periodically marks by ultrasonic oscillation were remained on the surface. Cutting phenomena of ultrasonic cutting is different compared with ordinary cutting conditions.

2012 ◽  
Vol 516 ◽  
pp. 367-372 ◽  
Author(s):  
Keisuke Hara ◽  
Hiromi Isobe ◽  
Yoshihiro Take ◽  
Toshihiko Koiwa

This study investigated phenomena of ultrasonic cutting in the case of high-speed conditions. Ultrasonically assisted cutting techniques were developed by Kumabe in the 1950s. He found a critical cutting speed that limits cutting speed to obtain ultrasonically assisted effects and is calculated by frequency and amplitude of oscillation. In general, ultrasonically assisted cutting is not suitable for high-speed cutting conditions because the effects of ultrasonic application are cancelled due to tool contacts with the workpiece during the cutting operation. Present ultrasonically assisted cutting cannot allow increased cutting speed because cutting speed is limited by a critical cutting speed that is less than that compared with general cutting speed. And ultrasonically assisted cutting cannot improve productivity due to long processing time. We conducted high-speed ultrasonic cutting, and the maximum cutting speed in this research was 300 m/min which is higher than general critical cutting speed. The workpiece material was A5056 and cemented carbide tool inserts were employed in this research. Without ultrasonic oscillation, machined surface retained some built up edge and surface roughness is 28 μmRz. In the case of ultrasonic cutting, surface hasnt built up edge and periodically marks due to ultrasonic oscillation remained on the surface. The roughness of conventionally cut surface is better than in ultrasonic cutting. The cutting phenomena of ultrasonic cutting are different compared with those under conventional cutting conditions.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1679
Author(s):  
Guosheng Su ◽  
Yuhao Wang ◽  
Zhitao Han ◽  
Peirong Zhang ◽  
Hongxia Zhang ◽  
...  

The contact stress and heating effect between the cutting tool and workpiece in metal machining is symmetrical. However, the symmetry may be destroyed by changes in the workpiece material mechanical properties, such as ductility. The goal of this study is to reveal the wear characteristics of the cutting tool in machining a ductile metal with the cutting speed at which the metal is embrittled by the high-strain-rate-embrittle effect (HSREE). Orthogonal high-speed turning experiments were carried out. Pure iron type DT8 was cut at different cutting speeds, ranging from 1000 m/min to 9000 m/min. The shape and morphology of the chips obtained in the experiment were observed and analyzed by optical microscope and scanning electron microscope (SEM). Tool wear characteristics at different cutting speeds were observed. It shows that the pure iron becomes completely brittle when the cutting speed is higher than 8000 m/min. On the rake face, the coating of the cutting tool bursts apart and peels off. A matrix crack originates in the cutting edge or rake face and extends to the flank face of the cutting tool. The effects of HSREE on the tool wear is discussed. The findings of this study are helpful for choosing a suitable tool for brittle cutting of the ductile metal pure iron with very high cutting speed and solving the problems in machining due to its high ductility and high stickiness.


2015 ◽  
Vol 656-657 ◽  
pp. 237-242
Author(s):  
Kenji Yamaguchi ◽  
Tsuyoshi Fujita ◽  
Yasuo Kondo ◽  
Satoshi Sakamoto ◽  
Mitsugu Yamaguchi ◽  
...  

It is well known that a series of cracks running perpendicular to the cutting edge are sometimes formed on the rake face of brittle cutting tools during intermittent cutting. The cutting tool is exposed to elevated temperatures during the periods of cutting and is cooled quickly during noncutting times. It has been suggested that repeated thermal shocks to the tool during intermittent cutting generate thermal fatigue and result in the observed thermal cracks. Recently, a high speed machining technique has attracted attention. The tool temperature during the period of cutting corresponds to the cutting speed. In addition, the cooling and lubricating conditions affect the tool temperature during noncutting times. The thermal shock applied to the tool increases with increasing cutting speed and cooling conditions. Therefore, to achieve high-speed cutting, the evaluation of the thermal shock and thermal crack resistance of the cutting tool is important. In this study, as a basis for improving the thermal shock resistance of brittle cutting tools during high-speed intermittent cutting from the viewpoint of cutting conditions, we focused on the cooling conditions of the cutting operation. An experimental study was conducted to examine the effects of noncutting time on thermal crack initiation. Thermal crack initiation was found to be restrained by reducing the noncutting time. In the turning experiments, when the noncutting time was less than 10 ms, thermal crack initiation was remarkably decreased even for a cutting speed of 500 m/min. In the milling operation, the number of cutting cycles before thermal crack initiation decreased with increasing cutting speed under conditions where the cutting speed was less than 500 m/min. However, when the cutting speed was greater than 600 m/min, thermal crack initiation was restrained. We applied the minimal quantity lubrication (MQL) coolant supply to the intermittent cutting operation. The experimental results showed that the MQL diminished tool wear compared with that under the dry cutting condition and inhibited thermal crack initiation compared with that under the wet cutting condition.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


Author(s):  
Zengqiang Wang ◽  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Kunyang Lin ◽  
...  

Abstract High speed cutting (HSC) technology has the characteristics of high material removal rates and high machining precision. In order to study the relationships between chip morphology and machining surface characteristic in high speed cutting of superalloy Inconel718. High-speed orthogonal cutting experiment are carried out by used a high speed cutting device based on split Hopkinson pressure bar (SHPB). The specimen surfaces and collected chips were then detected with optical microscope, scanning electron microscope and three-dimensional surface profile measuring instrument. The results show that within the experimental parameters (cutting speed from 8–16m/s, depth of cut 0.1–0.5mm), the obtained chips are sawtooth chips and periodic micro-ripple appear on the machined surface. With the cutting speed increases, machining surface roughness is decreases from 1.4 to 0.99μm, and the amplitude of periodic ripples also decreases. With the cutting depth increases, the machining surface roughness increases from 0.96 to 5.12μm and surface topography becomes worse. With the increase of cutting speed and depth of cut, the chips are transform from continues sawtooth to sawtooth fragment. By comparing the frequency of surface ripples and sawtooth chips, it is found that they are highly consistent.


Author(s):  
Jae-Wook Oh ◽  
Hsin-Yu Kuo ◽  
Kevin Meyer ◽  
Roger Lindle ◽  
Howard Weaver ◽  
...  

At some cutting conditions chips formed during high-speed face turning of nickel based alloys are re-bonded to the machined workpiece surface, even when coolant is applied. Unfortunately, chip-rebonding reduces surface quality, which leads to a shorter fatigue lives for machined parts. Although several researchers have documented this phenomenon and its effects, the root causes of this phenomenon is currently unknown. In order to determine the root causes of chip rebonding, past test samples exhibiting chip rebonding were first analyzed. Metallographic analysis revealed that the chip rebonding material is the same as the workpiece material and that the bonding is mechanically driven. Next, screening design of experiments (DOE) were completed to reliably reproduce chip rebonding in dry cutting cases. Chip rebonding detection and severity were measured using multiple equally spaced surface roughness measurements (Rt parameter). In addition, in-process cutting forces and tool wear measurements were recorded and compared. Finally Taguchi methods were applied to identify the key variables their influence on chip-rebonding. In dry cutting tests it was found that decreasing feed-rate while cutting at a constant cutting speed is the most influential factor in obtaining chip rebonding. High-speed video revealed that at lower feed-rates the chip curls back to the surface of workpiece, while at higher feed-rates the chip flows away from the cutting region with minimal curl. Additional testing performed verifies this theory.


Author(s):  
Zhanfei Zhang ◽  
Zengqiang Wang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Yifeng Xiong

High-speed cutting technology has the characteristics of high material removal rate and excellent processing quality. To investigate the surface quality of high-speed cutting Ti6Al4V alloy, the orthogonal cutting experiment is the cutting device based on improved Split-Hopkinson pressure bar carried out with a cutting speed of about 7–16 m/s. Surface roughness, residual stress and three-dimensional surface topography are examined to characterize the surface quality. And the chip geometry parameters are measured to analyze the formation mechanism of surface topography. The result shows that cutting force and surface roughness increase rapidly with the increase in depth of cut. In the meantime, the periodic microwaves appeared on the machined surface, and their amplitudes increase with the increase in depth of cut. However, surface roughness, residual stress and microwave amplitude all decrease with the increase in cutting speed. Moreover, it is found that the evolution trend of chip thickness and surface roughness with cutting parameters is very similar. Therefore, it can be inferred that there is a strong relationship between surface topography and chip morphology.


2011 ◽  
Vol 117-119 ◽  
pp. 594-597 ◽  
Author(s):  
Mu Lan Wang ◽  
Yong Feng ◽  
Xiao Xia Li ◽  
Bao Sheng Wang

An experimental system used for temperature measurement is designed by the K-type thermocouple thermometry to achieve a direct measurement of cutting temperature in high speed orthogonal turning. The general regularity of temperature distribution is concluded, and the corresponding influences of cutting speed and cutting depth on the maximum temperature value are discussed in detail. Experimental data and simulating results are comparative analyzed to demonstrate the feasibility and correctness of Finite Element Method (FEM) model simulation and analytical solution. The verified model of temperature field can be applied to develop an effective non-contact soft-sensing method for high speed cutting temperature.


2013 ◽  
Vol 589-590 ◽  
pp. 117-121 ◽  
Author(s):  
Xiu Li Fu ◽  
Zeng Hui An ◽  
Yang Qiao ◽  
Xiu Hua Men

Work-hardening of machined surface plays an important role in the evaluation of surface quality and performance of wear resistance in the process of machining components. In this study work-hardening of machined surface during milling 7050-T7451 aluminum alloy is investigated using micro-hardness experiments under different cutting conditions. Moreover, the wear resistance of machined surface including wear quantity and friction coefficient are obtained and studied by means of high speed ring-block friction-wear tester. The work-hardening and wear resistance are particularly sensitive to cutting speed. Friction coefficient has marked drop trends and the tendency of wear quantity is ascend in first and descend at last as work-hardening increases. The comparison of wear resistance under different cutting conditions shows that the wear resistance of machined surface can be directly affected by work-hardening and machined surface obtained by high speed milling with higher micro-hardness have more superior in wear resistance performance.


Sign in / Sign up

Export Citation Format

Share Document