A Local Compression Tests of UHPC Anchor Blocks for Post-Tensioning Tendons

2012 ◽  
Vol 525-526 ◽  
pp. 561-564
Author(s):  
Eun Suk Choi ◽  
Jung Woo Lee ◽  
Chang Joh ◽  
Jong Won Kwark ◽  
Jee Sang Kim ◽  
...  

In the application of Ultra High Performance Concrete (UHPC) to PSC girders by using the post-tensioning system, the high strength and ductility of UHPC in tension can be exploited to substitute the confined reinforcing bars which control the rupture around the anchorage device. The exploitation of such properties is expected to simplify the reinforcing details around the anchorage zone. Taking advantage of UHPC can downsize a cross section with the attributes of high compression and tensile strength. This paper reports the local behavior of UHPC anchor block under compression. Test specimens were made based on mix proportion of K-UHPC (KICT-Ultra High Performance Concrete) developed by the Korea Institute of Construction Technology (KICT). The performance of the anchor block was evaluated according to ETAG-013 (European Technical Agreement Guide No.13) of EOTA (European Organization for Technical Approvals). As the results of the experiment, it is found that the details and reinforcement of UHPC anchorage zone can be simplified with the interconnection effect and the high intensity of the matrix itself.

Author(s):  
C. Sauer ◽  
F. Bagusat ◽  
M.-L. Ruiz-Ripoll ◽  
C. Roller ◽  
M. Sauer ◽  
...  

AbstractThis work aims at the characterization of a modern concrete material. For this purpose, we perform two experimental series of inverse planar plate impact (PPI) tests with the ultra-high performance concrete B4Q, using two different witness plate materials. Hugoniot data in the range of particle velocities from 180 to 840 m/s and stresses from 1.1 to 7.5 GPa is derived from both series. Within the experimental accuracy, they can be seen as one consistent data set. Moreover, we conduct corresponding numerical simulations and find a reasonably good agreement between simulated and experimentally obtained curves. From the simulated curves, we derive numerical Hugoniot results that serve as a homogenized, mean shock response of B4Q and add further consistency to the data set. Additionally, the comparison of simulated and experimentally determined results allows us to identify experimental outliers. Furthermore, we perform a parameter study which shows that a significant influence of the applied pressure dependent strength model on the derived equation of state (EOS) parameters is unlikely. In order to compare the current results to our own partially reevaluated previous work and selected recent results from literature, we use simulations to numerically extrapolate the Hugoniot results. Considering their inhomogeneous nature, a consistent picture emerges for the shock response of the discussed concrete and high-strength mortar materials. Hugoniot results from this and earlier work are presented for further comparisons. In addition, a full parameter set for B4Q, including validated EOS parameters, is provided for the application in simulations of impact and blast scenarios.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


2000 ◽  
Vol 27 (5) ◽  
pp. 985-992 ◽  
Author(s):  
T I Campbell ◽  
N G Shrive ◽  
K A Soudki ◽  
A Al-Mayah ◽  
J P Keatley ◽  
...  

The development of a wedge-type anchorage system for fibre reinforced polymer (FRP) tendons, as part of an overall corrosion-free post-tensioning system, is outlined in this paper. A stainless steel anchor is described, and results from numerical models and load tests to evaluate its behaviour under loads from anchor set, as well as static and repeated tendon tension, are presented. An alternative wedge-type anchorage system made from ultra-high performance concrete is also described. It is shown that, although significant progress has been made in development of the anchorage, further work is required to make it more robust.Key words: FRP tendons, post-tensioning, anchorage, corrosion-free, mathematical models, load tests, concrete.


2018 ◽  
Vol 149 ◽  
pp. 01005 ◽  
Author(s):  
Arezki Tagnit-Hamou ◽  
Ablam Zidol ◽  
Nancy Soliman ◽  
Joris Deschamps ◽  
Ahmed Omran

Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G provides several advantages (technological, economical, and environmental). It reduces the production cost of concrete and decrease the carbon footprint of a traditional concrete structures. The rheology of fresh concrete can be improved due to the replacement of cement by non-absorptive glass particles. Strength and rigidity improvements in the concrete containing G are due to the fact that glass particles act as inclusions having a very high strength and elastic modulus that have a strengthening effect on the overall hardened matrix.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Chang-Sik Choi

Flexural strength evaluation models for steel fiber reinforced ultra high strength concrete were suggested and evaluated with test results. Suggested flexural strength models were composed of compression stress blocks and tension stress blocks. Rectangular stress block, triangular stress block, and real distribution shape of stress were used on compression side. Under tension, rectangular stress block distributed to whole area of tension side and partial area of tension side was used. The last model for tension side is realistic stress distribution. All these models were verified with test result which was carried out in this study. Test was conducted by four-point loading with 2,000 kN actuator for slender beam specimen. Additional verifications were carried out with previous researches on flexural strength of steel fiber reinforced concrete or ultra high strength concrete. Total of 21 test specimens were evaluated. As a result of comparison for flexural strength of section, neutral axis depth at ultimate state, models with triangular compression stress block, and strain-softening type tension stress block can be used as exact solution for ultra high performance concrete. For the conservative and convenient design of section, modified rectangular stress block model can be used with strain softening type tension stress block.


2020 ◽  
Vol 10 (15) ◽  
pp. 5132
Author(s):  
Muhammad Naveed Zafar ◽  
Muhammad Azhar Saleem ◽  
Jun Xia ◽  
Muhammad Mazhar Saleem

Enhanced quality and reduced on-site construction time are the basic features of prefabricated bridge elements and systems. Prefabricated lightweight bridge decks have already started finding their place in accelerated bridge construction (ABC). Therefore, the development of deck panels using high strength and high performance concrete has become an active area of research. Further optimization in such deck systems is possible using prestressing or replacement of raw materials with sustainable and recyclable materials. This research involves experimental evaluation of six full-depth precast prestressed high strength fiber-reinforced concrete (HSFRC) and six partial-depth sustainable ultra-high performance concrete (sUHPC) composite bridge deck panels. The composite panels comprise UHPC prepared with ground granulated blast furnace slag (GGBS) with the replacement of 30% cement content overlaid by recycled aggregate concrete made with replacement of 30% of coarse aggregates with recycled aggregates. The experimental variables for six HSFRC panels were depth, level of prestressing, and shear reinforcement. The six sUHPC panels were prepared with different shear and flexural reinforcements and sUHPC-normal/recycled aggregate concrete interface. Experimental results exhibit the promise of both systems to serve as an alternative to conventional bridge deck systems.


2011 ◽  
Vol 179-180 ◽  
pp. 569-574
Author(s):  
Zhong Wen Yue ◽  
Hui Zhang ◽  
Bo Yang Dou

To study the industrial technology for application of the C100 High strength and high performance concrete which is in freezing shaft lining of thick overburden, the industrial test of the shaft wall of high strength and high performance concrete is carried out under the engineering background of auxiliary shaft in Yuncheng coal mine of Juye coal mining area in Shandong Province. The verified laboratory testing results comported with the results of industrial technology from macro-mechanics, failure fractal, resultant morphology and pore characteristics. And the quality control system of high performance concrete and construction technology can be established. The results show that the experimental formula and construction technology of C100 high strength and high performance concrete can meet the requirement of field concrete shaft lining and achieve the high level of quality control. The industrial application and study results accord with the field requirement. Furthermore, the study results also provide experimental basis and industrial production data for industrial application of C100 high strength and high performance concrete.


Sign in / Sign up

Export Citation Format

Share Document