AP40 Bioactive Glass Ceramic by Sol-Gel Synthesis: In Vitro Dissolution and Cell-Mediated Bioresorption

2013 ◽  
Vol 541 ◽  
pp. 41-50 ◽  
Author(s):  
Ilaria Cacciotti ◽  
Giorgia Lehmann ◽  
Antonella Camaioni ◽  
Alessandra Bianco

In this work, the sol-gel synthesis of AP40 bioactive glass system was reported. The obtained powder was fully characterised in terms of microstructure, composition and thermal behaviour by X-ray diffraction (XRD) measurements, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry and differential thermal analysis (TG-DTA).In vitrodissolution tests were performed in order to assess the degradation behaviour of sol-gel derived AP40 samples thermally treated at different temperatures. Finally, preliminary results on cytocompatibility are reported, based on bioresorption activity of human peripheral blood monocytes differentiated into osteoclasts on sintered disks.

2020 ◽  
Vol 833 ◽  
pp. 214-219
Author(s):  
Nik Syahirah Aliaa Nik Sharifulden ◽  
Siti Noor Fazliah Mohd Noor ◽  
Siti Fatimah Samsurrijal ◽  
Siti Nur Liyana Ramlee ◽  
Nur Syazana Azizan

Bioactivity is an important aspect in biomaterial science ensuring materials used are safe for clinical application. The study describes fabrication of composites containing polylactic acid (PLA) – polyethylene glycol (PEG) with incorporation of sol-gel derived 45S5 bioactive glass (BG). Thermal analysis via Differential Thermal Analysis shows a favorable point over degree of crystallization that influence cells attachment, although non-significant difference in values indicates BG has homogenously dispersed. This correlates to X-ray diffraction analysis where non-significant difference is seen in intensities of the diffraction peaks, which confirms low impact of BG brittleness properties over the fabricated composite. Composites’ pH and degradation study in Simulated Body Fluid shows a steady increment profile over time and lower degradation rate for the composite after incorporation of BG. In vitro cell proliferation study also showed that HDF cells seeded on composite film of P/BG2.5 exhibit highest cell viability with steady increment of proliferation throughout the observation period.


2014 ◽  
Vol 631 ◽  
pp. 30-35 ◽  
Author(s):  
S. Solgi ◽  
M. Shahrezaee ◽  
A. Zamanian ◽  
T.S. Jafarzadeh Kashi ◽  
Majid Raz ◽  
...  

Bioactive glass of the type CaO–SrO–P2O5–SiO2was obtained by the sol-gel processing method. Three samples containing 0 mol%, 5 mol% and 10 mol% of SrO were synthesized. The obtained bioactive glasses were characterized by the techniques such as, X-ray diffraction (XRD) and scanning electron microscope (SEM) and the effect of SrO/CaO substitution on in vitro biological properties of the synthesized glasses were evaluated and biocompatibility of the samples was measured using MTT assay. The results showed that incorporation of Sr in the obtained glass network did not result in any structural alteration of it due to the similar role of SrO compared with that of CaO. In vitro experiments with human osteosarcoma cell lines (MG-63) and MTT assay indicated that bioactive glass incorporating 5 mol% of Sr in the composition is non-toxic and revealed good biocompatibility.


2020 ◽  
Vol 10 (4) ◽  
pp. 310-318
Author(s):  
Sara Bouhazma ◽  
Imane Adouar ◽  
Sanae Chajri ◽  
Smaiel Herradi ◽  
Mohamed Khaldi ◽  
...  

Bioactive powders of the binary SiO2-CaO, ternary SiO2-CaO-P2O5 and quaternary systems SiO2-CaO-P2O5-Na2O/Mg2O were synthesized using a sol-gel route. The gels were converted into bioglasses powders by heat treatments at the temperature of 700°C. The resulting materials were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Environmental Scanning Electron Microscopy (ESEM) and in vitro bioactivity in acellular Simulated Body Fluid (SBF). The in vitro tests showed that the samples had good apatite-forming ability. Glasses doped with sodium and magnesium show good results in terms of bioactivity and mechanical properties. The results showed that the quaternary glass SiO2-CaO-P2O5-Na2O containing Na is the most bioactive, only 6 hours after its immersion in SBF; a layer of hydroxycarbonated apatite (HAC) was deposited on the glass and compressive strength of up to 233.08 MPa with a porosity of 11.02%, due to the presence of the Na2Ca2Si3O9 phase. Magnesium also affects bioactivity because it has improved from binary to ternary to quaternary doped with magnesium, bioactive from 12h of contact with the SBF.


2006 ◽  
Vol 45 ◽  
pp. 260-265 ◽  
Author(s):  
Antônio Hortêncio Munhoz Jr. ◽  
Leila Figueiredo de Miranda ◽  
G.N. Uehara

A pseudoboehmite was obtained by sol-gel synthesis using aluminum nitrate as precursor. It was used a 2n full factorial design for studying the effect of the temperature of synthesis, the concentration of ammonium hydroxide, and the radiation dose in the product of sol-gel synthesis. The product of the synthesis was analyzed by scanning electron microscopy, x-ray diffraction of the product (after firing the pseudoboehmite at different temperatures), and it was also analyzed the temperature of endothermic and exothermic transformations using the thermo gravimetric analysis (TG) and differential scanning calorimetry (DSC). The X-ray diffraction data show that α-alumina was obtained at 1100o C.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
M. Prabhu ◽  
S. Ruby Priscilla ◽  
K. Kavitha ◽  
P. Manivasakan ◽  
V. Rajendran ◽  
...  

Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique.In vitrobioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity againstStaphylococcus aureusandEscherichia coliand less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.


2013 ◽  
Vol 467 ◽  
pp. 64-69 ◽  
Author(s):  
Nader Nezafati ◽  
Saeed Hesaraki ◽  
Mohammad-Reza Badr-Mohammadi

In the present research, strontium containing nanobioactive glass (NBG-Sr) was synthesized by sol-gel method. The morphology was analyzed by transmission electron microscope (TEM). Different amounts (0.5 to 5 wt%) of NBG-Sr were then added to biphasic calcium phosphate (BCP). They were sintered at different temperatures, i.e., 1100, 1200 and 1300 °C and changes in physical and mechanical properties were investigated. A sharp decrease in pore volume was observed as the temperature increased. The maximum bending strength (~45 MPa) was achieved for BCP which was mixed with 3 wt% NBG-Sr and sintered at 1200 °C. This value was approximately the same when it was sintered at 1300 °C. The bending strength failed when both lower and higher amounts of 3 wt% NBG-Sr were utilized. Therefore, sintering of composites at 1200 °C was economically reasonable. The X-ray results showed that NBG-Sr additive did not change the phase composition of BCP when it was heat treated at 1200 °C. The attachment and proliferation of rat calvarium-derived osteoblasts on samples sintered at 1200 °C were also evaluated by scanning electron microscopy (SEM). Based on cell studies, all NBG-Sr-added BCPs supported attachment and proliferation of osteoblastic cells. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties can be produced by using certain quantity of strontium-containing bioactive glass particles.


Author(s):  
K. E. Muse ◽  
D. G. Fischer ◽  
H. S. Koren

Mononuclear phagocytes, a pluripotential cell line, manifest an array of basic extracellular functions. Among these physiological regulatory functions is the expression of spontaneous cytolytic potential against tumor cell targets.The limited observations on human cells, almost exclusively blood monocytes, initially reported limited or a lack of tumoricidal activity in the absence of antibody. More recently, freshly obtained monocytes have been reported to spontaneously impair the biability of tumor target cells in vitro (Harowitz et al., 1979; Montavani et al., 1979; Hammerstrom, 1979). Although the mechanism by which effector cells express cytotoxicity is poorly understood, discrete steps can be distinguished in the process of cell mediated cytotoxicity: recognition and binding of effector to target cells,a lethal-hit stage, and subsequent lysis of the target cell. Other important parameters in monocyte-mediated cytotoxicity include, activated state of the monocyte, effector cell concentrations, and target cell suseptibility. However, limited information is available with regard to the ultrastructural changes accompanying monocyte-mediated cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document