Scattering Matrix Approach to Informing Damage Monitoring and Prognosis in Composite Bolted Connections

2013 ◽  
Vol 558 ◽  
pp. 314-322
Author(s):  
Colin Haynes ◽  
Takeaki Nadabe ◽  
Nobuo Takeda ◽  
Michael D. Todd

Structural health monitoring refers to the process of making an assessment, based on nondestructive, in-situ, autonomous measurements, about the ability of a structure to perform its intended function. This paper presents work done on a bolted connection in carbon-fiber reinforced polymer composite materials. A composite specimen is bolted in a double lap joint configuration to a test apparatus that applies an increasing tensile load. Ultimately, the load results in bearing failure of the material around the bolt hole. To monitor the progression of damage, macro fiber composite sensors are bonded in a circular array around the bolt hole. These sensors are then used to generate ultrasonic guided waves, a popular technique in nondestructive evaluation because of the favorable combination of propagation distance and sensitivity to damage. As the specimen is subjected to increasing load levels, measurements are taken repeatedly and compared with one another. Because damage will change the local mechanical properties of the material, the ultrasonic waves passing through the damaged region will be scattered differently in each direction, resulting in a different waveform arriving at the other surrounding sensors. By applying appropriate signal processing techniques, these changes may be interpreted as indicating the extent of damage that has occurred in the specimen. Preliminary analysis is presented demonstrating the correlation between changes in received strain signals and increasing damage levels.

Author(s):  
Tuncay Kamas ◽  
Banibrata Poddar ◽  
Bin Lin ◽  
Lingyu Yu ◽  
Victor Giurgiutiu

The thermal effects at elevated temperatures mostly exist for pressure vessel and pipe (PVP) applications. The technologies for diagnosis and prognosis of PVP systems need to take the thermal effect into account and compensate it on sensing and monitoring of PVP structures. One of the extensively employed sensor technologies has been permanently installed piezoelectric wafer active sensor (PWAS) for in-situ continuous structural health monitoring (SHM). Using the transduction of ultrasonic elastic waves into voltage and vice versa, PWAS has been emerged as one of the major SHM sensing technologies. However, the dynamic characteristics of PWAS need to be explored prior its installation for in-situ SHM. Electro-mechanical impedance spectroscopy (EMIS) method has been utilized as a dynamic descriptor of PWAS and as a high frequency local modal sensing technique by applying standing waves to indicate the response of the PWAS resonator by determining the resonance and anti-resonance frequencies. Another SHM technology utilizing PWAS is guided wave propagation (GWP) as a far-field transient sensing technique by transducing the traveling guided ultrasonic waves (GUW) into substrate structure. The paper first presents EMIS method that qualifies and quantifies circular PWAS resonators under traction-free boundary condition and in an ambience with increasing temperature. The piezoelectric material degradation was investigated by introducing the temperature effects on the material parameters that are obtained from experimental observations as well as from related work in literature. GWP technique is also presented by inclusion of the thermal effects on the substrate material. The MATLAB GUI under the name of Wave Form Revealer (WFR) was adapted for prediction of the thermal effects on coupled guided waves and dynamic structural change in the substrate material at elevated temperature. The WFR software allows for the analysis of multimodal guided waves in the structure with affected material parameters in an ambience with elevated temperature.


Author(s):  
Wyatt Leininger ◽  
Xinnan Wang ◽  
X. W. Tangpong ◽  
Marshall McNea

In this study, the elastic modulus of 1 wt. % multiwalled carbon nanotube (MWCNT) reinforced epoxy composite was characterized using an in-house designed micro/nano tensile load stage in conjunction with an atomic force microscope (AFM). The surface of the nanocomposite was scanned by the AFM during intermittent tensile testing, and micro/nanoscale deformation was observed. The MWCNT reinforced nanocomposite exhibited a 23% increase in the measured elastic modulus compared with the pure epoxy. The elastic moduli of the nanocomposite were also predicted by the Halpin–Tsai and Hui–Shia models, and the former offered a better correlation with the experimental result when only the load bearing outer layer of the MWCNTs was considered. The combination of the load stage and AFM is capable of capturing the in situ deformation progress for small strain increments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng Zhou ◽  
Youzhou Yang ◽  
Jiaxin Wang ◽  
Qingyang Wu ◽  
Zhuozhi Gu ◽  
...  

AbstractIn vivo bioprinting has recently emerged as a direct fabrication technique to create artificial tissues and medical devices on target sites within the body, enabling advanced clinical strategies. However, existing in vivo bioprinting methods are often limited to applications near the skin or require open surgery for printing on internal organs. Here, we report a ferromagnetic soft catheter robot (FSCR) system capable of in situ computer-controlled bioprinting in a minimally invasive manner based on magnetic actuation. The FSCR is designed by dispersing ferromagnetic particles in a fiber-reinforced polymer matrix. This design results in stable ink extrusion and allows for printing various materials with different rheological properties and functionalities. A superimposed magnetic field drives the FSCR to achieve digitally controlled printing with high accuracy. We demonstrate printing multiple patterns on planar surfaces, and considering the non-planar surface of natural organs, we then develop an in situ printing strategy for curved surfaces and demonstrate minimally invasive in vivo bioprinting of hydrogels in a rat model. Our catheter robot will permit intelligent and minimally invasive bio-fabrication.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marc Thelen ◽  
Nicolas Bochud ◽  
Manuel Brinker ◽  
Claire Prada ◽  
Patrick Huber

AbstractNanoporosity in silicon leads to completely new functionalities of this mainstream semiconductor. A difficult to assess mechanics has however significantly limited its application in fields ranging from nanofluidics and biosensorics to drug delivery, energy storage and photonics. Here, we present a study on laser-excited elastic guided waves detected contactless and non-destructively in dry and liquid-infused single-crystalline porous silicon. These experiments reveal that the self-organised formation of 100 billions of parallel nanopores per square centimetre cross section results in a nearly isotropic elasticity perpendicular to the pore axes and an 80% effective stiffness reduction, altogether leading to significant deviations from the cubic anisotropy observed in bulk silicon. Our thorough assessment of the wafer-scale mechanics of nanoporous silicon provides the base for predictive applications in robust on-chip devices and evidences that recent breakthroughs in laser ultrasonics open up entirely new frontiers for in-situ, non-destructive mechanical characterisation of dry and liquid-functionalised porous materials.


2011 ◽  
Vol 528 (13-14) ◽  
pp. 4507-4515 ◽  
Author(s):  
Kashif Naseem ◽  
Yanqing Yang ◽  
Xian Luo ◽  
Bin Huang ◽  
Guanghai Feng

2018 ◽  
Vol 58 (9) ◽  
pp. 1451-1467 ◽  
Author(s):  
I. Tabiai ◽  
R. Delorme ◽  
D. Therriault ◽  
M. Levesque

Author(s):  
Zhanjun Feng ◽  
Weibin Wang ◽  
Wenqiang Tong ◽  
Keyi Yuan ◽  
Zandong Han ◽  
...  

Large storage tanks for oil storage are widely used in petrochemical industry. Corrosion in the tank floor and wall is a serious threat for environmental and economic safety. Owing to their unique potential for long-range, in-plane propagation through plates, Ultrasonic Guided Waves (UGW) offer an obvious solution in the development of an on-board structural health-monitoring (SHM) system, providing assessment of structural integrity for storage tank floor and wall defect in-situ inspection. This paper presents this application by focusing on their propagation through the plate structure. Even very small mechanical discontinuity or geometry change of plate structure, e.g. corrosion defect on tank floor, will influence the propagation characteristic of the guided waves. These effects are measured as mode changes, frequency shifts or filtering, reflection and diffraction of new ultrasonic modes or overall distortion of the original ultrasonic signals. By capturing and analyzing these changes we can deduct the corrosion defect of the tank floor and wall which causes the ultrasonic signal change and interactions. The T/R transducers are required to be attached on the outer edge of the tank floor and outer surface of the tank wall. The technique is developed based on the Lamb wave transmission tomography. Starting from the dispersion curve and choosing the appropriate wave mode, the propagation of the guided waves in the tank floor and wall has been carried out through numerical simulation and the experiment has been conducted for verification using the full-size oil storage tank. The low frequency guided waves can propagate longer distance in planar and tubular structures. The later has been already used in pipeline inspection. The complexity of the application of ultrasonic guided wave in tank floor inspection lies in the object containing multiple lap joint welds along the large diameter of the tank (up to 100 m) and the complicated reconstruction of the two-dimensional defect distribution information. The main scope of the investigation was the application of the ultrasonic transmission tomography for localization of non-uniformities of inside tank floor, taking into account ultrasonic signal losses due to the loading with oil on the top and ground support at the bottom for the tank floor, and the loading with oil inside for the vertical tank wall.


Author(s):  
Teoh Hui Xin ◽  
◽  
Norazman Mohamad Nor ◽  
Mohammed Alias Yusof ◽  
◽  
...  

Bamboo is an eco-friendly material, it can be used in various applications such as bamboo housing, bamboo bridges, bamboo scaffolding, ply bamboo, bamboo furniture, and for defence applications. It has various advantages to be used as structural material. However, it has weaknesses such as crushing failure under extreme loading that need to be addressed. The objective of this research is to enhance bamboo bearing and bending capacity using various stiffeners. Experimental work done is to investigate the compressive strength, bending strength, bearing strength and tensile strength of raw local bamboo. Further analysis includes bending and bearing strength of raw bamboo and strengthen bamboo using Glass Fiber Reinforced Polymer (GFRP) and Polyurethane (PU) Foams. From the test done, the bearing strength of raw bamboo Semantan with node is between 2.61 MPa to 3.14 MPa and for raw bamboo Semantan without node is between 0.28 MPa to 0.82 MPa, average bending strength of raw bamboo Semantan is 59 MPa. For strengthen bamboo with 4 layers of Glass Fiber Reinforced Polymer, the bearing strength without node is between 1.59 MPa to 2.38 MPa, and the average bending strength is 62 MPa which is about 5% higher than raw bamboo.


Sign in / Sign up

Export Citation Format

Share Document