Preparation and Characterization of Polyesteramide Composited by Carbon Nanotube

2013 ◽  
Vol 562-565 ◽  
pp. 764-769
Author(s):  
Yi He ◽  
Lan Ma ◽  
Peng Hai ◽  
Jin Bo Li

Polyesteramide (PEA) have good mechanical properties, compositing with multi-walled carbon nanotubes (MWNTs) can further improve the mechanical properties of the polymer. In this paper, PEA/MWNTs were synthesized in-suit using the reinforcement of nanocomposite. SEM and tensile testing were used to characterize the composited polyesteramides. The results show that MWNTs can be uniformly dispersed in the composited polyesteramides, the PEA/MWNTs tensile strength and Elongation at break increased.

2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


2016 ◽  
Vol 3 (01) ◽  
Author(s):  
Holia Onggo ◽  
Rike Yudianti ◽  
Endang Ruchiat

Carbon nanotube-rayon composite filaments was fabricated by spinning and coagulation of the mixture of 100mL functionalized carbon nanotube dispersion (containing 0.72 g FCNT) and cellulose xanthate in NaOH solution using viscose process. In the process, CNT was functionalized using mixture of acidic solution ( H2SO4/HNO3, 3:1 v/v). Influence of functionalized (FCNT) and non-functionalized carbon nanotubes (nFCNT) on the fabrication of rayon nanocomposite filament was studied. Physical and morphological properties of the nanocomposite filaments were characterized by single filament tenacity tester, photo micrograph, scanning electron microscope (SEM) and transmission electron microscope (TEM). Filterability and mechanical properties of FCNT-rayon nanocomposite filament greatly improved by reducing clogging constant from 1689 to 153 and increasing tenacity from 2.72 to 3.01 g/denier and decreasing elongation from 57.1 to 36.5% respectively compared with those of nFCNT-rayon nanocomposite filament.Keywords: functionalized multi-walled carbon nanotubes, nanocomposite filament, mechanical properties, filterability, dispersion  ABSTRAKRayon nanocomposite filaments telah dibuat melalui proses pemilinan (spinning) dan koagulasi (coagulation) dari campuran 100 mL larutan functionalized carbon nanotube dispersion (FCNT=0,72 g), selulosa santat dalam larutan NaOH melalui proses viskosa. CNT di functionalisasi (FCNT) menggunakan campuran larutan asam (H2SO4/HNO3, 3:1 v/v). Pengaruh fungsionalisasi CNT pada pembuatan rayon nanocomposite filaments dipelajari dengan cara membandingkannya dengan CNT tanpa fungsionalisasi (nFCNT). Sifat fisik dan morfologi dari rayon-nanocomposite filaments dikarakterisasi menggunakan tenacity tester, photo micrograph, scanning electron microscope (SEM) dan transmission electron microscope (TEM). Viskosa FCNT memiliki daya saring (Kw) cukup baik yaitu 155, sedangkan viskosa nFCNT  memiliki daya saring 1689 (tidak baik). Kekuatan mekanik dari FCNT-rayon nanocomposite filaments berturut turut adalah 3,01 g/denier (tenacity), dan 36,5% (elongation), lebih baik dibandingkan dengan nFCNT-rayon nanocomposite filament: 2,72 g/denier (tenacity) dan 57,1% (elongation).Kata kunci: fungsionalisasi multi-walled carbon nanotubes, rayon-nanocomposite filament, sifat mekanik, daya saring, dispersi


2015 ◽  
Vol 719-720 ◽  
pp. 141-144
Author(s):  
Chen Chi M. Ma ◽  
Sheng Tsung Hsiao ◽  
Wei Hao Liao ◽  
Shin Ming Li ◽  
Yu Sheng Wang ◽  
...  

This study proposed a method to improve the mechanical properties and thermal conductivity of epoxy composites by incorporating multi-walled carbon nanotubes (MWCNTs) and multi-graphene platelets (MGPs) hybrid materials. The MWCNT can bridge adjacent MGPs and inhibit their aggregation effectively, leading to an increased contact surface area between MGP/MWCNT hybrid materials and epoxy matrix. From observing the fractured surface of composite by scanning electron microscope, MWCNT/MGP hybrid materials exhibited better compatibility than individual MWCNT and MGP did.The tensile strength of GD400-MWCNT/MGP/epoxy composites was 35.4% higher than that of epoxy, compared to only a 0.9% increase in tensile strength for MGP/epoxy composites. Thermal conductivity enhanced by 146.9% through incorporating MWCNT/MGP hybrid materials and 23.9% for MGP fillers, compared to non-derivatised epoxy.


2016 ◽  
Vol 70 (6) ◽  
Author(s):  
Agnieszka Piegat ◽  
Anna Jędrzejewska ◽  
Robert Peƚech ◽  
Iwona Peƚech

AbstractThe influence of the chemical modification of carbon nanotubes on the mechanical, thermal and electrical properties of poly(butylene terephthalate)-based composites was investigated. Polymer composites based on poly(butylene terephthalate) were obtained via in situ polymerisation or extrusion. Commercially available multi-walled carbon nanotubes (Nanocyl NC7000) at different loadings (mass %: 0.05, 0.25, 1, 2) were used as fillers. The functionalisation process took place under a chlorine atmosphere followed by a reaction with sodium hydroxide. The effect of carbon nanotube modification was analysed according to the changes in the polymer thermal and mechanical properties. An addition of modified carbon nanotubes in the amount of 0.05 mass % improved the mechanical properties of the composites in terms of both Young’s modulus and tensile strength by 5–10 % and 17–30 % compared with composites with unmodified carbon nanotubes and neat poly(butylene terephthalate), respectively. The in situ method of composite preparation was a more effective technique for enhancing the matrix–filler interactions, although a significantly lower amount of fillers were used than in the extrusion method.


2017 ◽  
Vol 4 (5) ◽  
pp. 17-00029-17-00029 ◽  
Author(s):  
Keiichi SHIRASU ◽  
Itaru TAMAKI ◽  
Takamichi MIYAZAKI ◽  
Go YAMAMOTO ◽  
Raman BEKAREVICH ◽  
...  

2006 ◽  
Vol 313 ◽  
pp. 1-6
Author(s):  
Nyan Hwa Tai ◽  
Meng Kao Yeh ◽  
Jia Hau Liu ◽  
Chien Hsin Yang

Composites of phenolic resin reinforced by the multi-walled carbon nanotubes (MWCNTs) were fabricated and its mechanical properties were measured. The MWCNTs were synthesized by the floating catalyst method in a thermal chemical vapor deposition chamber. Benzene, hydrogen, ferrocene, and thiophene were used as carbon source, carrier gas, catalyst, and growth promoter, respectively. The nano-composites were made by the melt mixing and the resin infiltration methods. Tensile strength, Poisson’s ratio, and modulus were measured and the morphologies on the fracture surface were examined by the field emission scanning electron microscope (FESEM). The microstructure of the synthesized MWCNTs reinforced nano-composites was examined by FESEM. The influences of MWCNTs amounts on the mechanical properties of the nano-composites were discussed.


2018 ◽  
Vol 38 (8) ◽  
pp. 731-738
Author(s):  
Yifan Huang ◽  
Weicheng Jiao ◽  
Yue Niu ◽  
Guomin Ding ◽  
Rongguo Wang

Abstract The aim of the paper is to develop a novel nanocomposite with high mechanical properties. The mechanical properties are improved by aligning the Fe3O4/multi-walled carbon nanotubes (MWCNTs) into a highly oriented manner in epoxy resin (EP) via a low magnetic field. Fe3O4 nanoparticles were tethered onto the surface of MWCNTs by a novel water-in-oil (W/O) method without heating at high temperatures or the protection of inert gas. Then, the modified magnetic MWCNTs (m-MWCNTs) were added into EP and aligned in a low magnetic field (100 mT). A method was presented to estimate the minimum magnetic field strength for aligning the m-MWCNTs. Besides, the morphology and microstructures of the fabricated m-MWCNTs and m-MWCNTs/EP highly ordered nanocomposites were characterized. Finally, the mechanical properties measurements were performed. The results of the experiments showed that this method was very efficient in aligning m-MWCNTs embedded in polymer matrix leading to a highly ordered composite for improving mechanical properties.


2015 ◽  
Vol 3 (21) ◽  
pp. 5573-5579 ◽  
Author(s):  
Yuling Li ◽  
Mingjun Li ◽  
Minglei Pang ◽  
Shengyu Feng ◽  
Jie Zhang ◽  
...  

The specific surface area is a key factor that determines both the electrical and mechanical properties of silicone rubber/MWCNTs.


2019 ◽  
Vol 50 (5) ◽  
pp. 692-715 ◽  
Author(s):  
Hande Sezgin ◽  
Rajesh Mishra ◽  
Jiri Militky ◽  
Omer Berk Berkalp

The influence of adding different types of multi-walled carbon nanotubes on mechanical (tensile strength and impact strength), thermo-mechanical (storage modulus, loss modulus and damping factor) and thermal properties (thermogravimetric and differential scanning calorimetry analysis) of fabric-reinforced polyester-based composite structures are analyzed in this study. Jute, E-glass and carbon fabrics are preferred as the reinforcement materials. Four-plied fabric-reinforced composites are fabricated using vacuum-assisted resin transfer molding technique. Results indicate that adding different types of multi-walled carbon nanotubes have increasing effect on mechanical and thermo-mechanical properties of composite structures; however, they have barely effect on thermal properties. Pristine multi-walled carbon nanotube-added specimens show higher mechanical and thermo-mechanical properties compared to functionalized multi-walled carbon nanotube-added samples.


Sign in / Sign up

Export Citation Format

Share Document