Numerical Simulation of Jetting Instability in Flow Focusing Microfluidics

2014 ◽  
Vol 609-610 ◽  
pp. 630-636
Author(s):  
Hong Bo Zhang ◽  
Jian Pu Liu ◽  
Huan Xin Lai

In this paper, jetting behavior of two immiscible liquids, water as the outer liquid and silicone oil as the inner liquid in typical flow focusing microchannels were numerically studied using VOF method. At low capillary number, uniform microdroplets were obtained by the absolute instability. With the increasing of fluid flow ratio, the jet is thinner and tends to break up further away the cross junction. The results showed that the flow rate ratio is the main factor that influences the microdroplet sizes, while the frequency of microdroplets formation can be controlled mainly by the surface tension when it is in the jetting regime.

2018 ◽  
Vol 71 (12) ◽  
pp. 957 ◽  
Author(s):  
Wenbo Han ◽  
Xueye Chen

To satisfy the increasingly high demands in many applications of microfluidics, the size of the droplet needs accurate control. In this paper, a level-set method provides a useful method for studying the physical mechanism and potential mechanism of two-phase flow. A detailed three-dimensional numerical simulation of microfluidics was carried out to systematically study the generation of micro-droplets and the effective diameter of droplets with different control parameters such as the flow rate ratio, the continuous phase viscosity, the interfacial tension, and the contact angle. The effect of altering the pressure at the x coordinate of the main channel during the droplet formation was analysed. As the simulation results show, the above control parameters have a great influence on the formation of droplets and the size of the droplet. The effective droplet diameter increases when the flow rate ratio and the interfacial tension increase. It decreases when the continuous phase viscosity and the contact angle increase.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4957
Author(s):  
Naqib Fuad Abd Rashid ◽  
Revathy Deivasigamani ◽  
M. F. Mohd Razip Wee ◽  
Azrul Azlan Hamzah ◽  
Muhamad Ramdzan Buyong

We present the integration of a flow focusing microfluidic device in a dielectrophoretic application that based on a tapered aluminum microelectrode array (TAMA). The characterization and optimization method of microfluidic geometry performs the hydrodynamic flow focusing on the channel. The sample fluids are hydrodynamically focused into the region of interest (ROI) where the dielectrophoresis force (FDEP) is dominant. The device geometry is designed using 3D CAD software and fabricated using the micro-milling process combined with soft lithography using PDMS. The flow simulation is achieved using COMSOL Multiphysics 5.5 to study the effect of the flow rate ratio between the sample fluids (Q1) and the sheath fluids (Q2) toward the width of flow focusing. Five different flow rate ratios (Q1/Q2) are recorded in this experiment, which are 0.2, 0.4, 0.6, 0.8 and 1.0. The width of flow focusing is increased linearly with the flow rate ratio (Q1/Q2) for both the simulation and the experiment. At the highest flow rate ratio (Q1/Q2 = 1), the width of flow focusing is obtained at 638.66 µm and at the lowest flow rate ratio (Q1/Q2 = 0.2), the width of flow focusing is obtained at 226.03 µm. As a result, the flow focusing effect is able to reduce the dispersion of the particles in the microelectrode from 2000 µm to 226.03 µm toward the ROI. The significance of flow focusing on the separation of particles is studied using 10 and 1 µm polystyrene beads by applying a non-uniform electrical field to the TAMA at 10 VPP, 150 kHz. Ultimately, we are able to manipulate the trajectories of two different types of particles in the channel. For further validation, the focusing of 3.2 µm polystyrene beads within the dominant FDEP results in an enhanced manipulation efficiency from 20% to 80% in the ROI.


1989 ◽  
Vol 25 (7) ◽  
pp. 394-396
Author(s):  
V. E. Shcherba ◽  
I. S. Berezin ◽  
S. S. Danilenko ◽  
I. E. Titov ◽  
P. P. Filippov

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Alejandro Regalado-Méndez ◽  
Sigurd Skogestad ◽  
Reyna Natividad ◽  
Rubí Romero

Reactive flash (RF) in biodiesel production has been studied in order to investigate steady-state multiplicities, singularities, and effect of biodiesel quality when the RF system approaches to bubble point. The RF was modeled by an index-2 system of differential algebraic equations, the vapor split (ϕ) was computed by modified Rachford-Rice equation and modified Raoult’s law computed bubble point, and the continuation analysis was tracked on MATCONT. Results of this study show the existence of turning points, leading to a unique bubble point manifold,(xBiodiesel,T)=(0.46,478.41 K), which is a globally stable flashing operation. Also, the results of the simulation in MATLAB® of the dynamic behavior of the RF show that conversion of triglycerides reaches 97% for a residence time of 5.8 minutes and a methanol to triglyceride molar flow ratio of 5 : 1.


2014 ◽  
Vol 488-489 ◽  
pp. 1047-1051
Author(s):  
Qing Qian Zheng ◽  
Bin Yang ◽  
Ning Chen ◽  
Hui Min Yang ◽  
Min Hu

In this paper, the finite method is applied and ABAQUS software is used, the vortex flow field is loaded as boundary condition of wraps. The stress and deformation in scroll under the action of gas pressure, temperature load and both of them is analyzed, the stress distribution and deformation of wraps in different shaft rotation angles is discussed, the stress distribution and deformation discipline of wraps are also respectively obtained. The results show that the overall stress and deformation in scroll are the largest when compression chamber is moving near the vent position and the thermal deformation is the main factor of affecting the overall deformation of scroll.


2017 ◽  
Vol 328 ◽  
pp. 480-487 ◽  
Author(s):  
V.R. Giampietro ◽  
M. Gulas ◽  
P. Rudolf von Rohr
Keyword(s):  

2014 ◽  
Vol 548-549 ◽  
pp. 1257-1264 ◽  
Author(s):  
Xiao Yong Suo

Taking ejection process of the ink droplets from ink-jet nozzle as the prototype, a similar numerical model of droplet ejection was established. The VOF method was applied to track the interface of droplet ejection process and it is shown that the numerical results simulated by the VOF method were accurate and reliable. Six kinds of liquid with different physical properties were chosen as the research object. The numerical results were analyzed and compared. Finally, the effect of the surface tension, viscosity and density on the droplet ejection process was discussed.


1996 ◽  
Vol 118 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Xiaoyi He ◽  
Micah Dembo

We present numerical computations of the deformation of an oil-droplet under the influence of a surface tension gradient generated by the surfactant released at the poles (the Greenspan experiment). We find this deformation to be very small under the pure surface tension gradient. To explain the large deformation of oil droplets observed in Greenspan’s experiments, we propose the existence of a phoretic force generated by the concentration gradient of the surfactant. We show that this hypothesis successfully explains the available experimental data and we propose some further tests.


2013 ◽  
Vol 712-715 ◽  
pp. 1201-1204
Author(s):  
Hai Feng Zhao ◽  
Yan Xu

The numerical simulation method is adopted to calculate the flow field of the secondary throttle choke used in the oil field. The relationships among the flow of the secondary throttle choke, differential pressure and diameters are studied. The results of numerical simulation coincide with the experiment values, which verify that the method is correct. The results show that the flow increases with the increasing of differential pressure of the throttle choke at both ends, but the increment of the flow gradually decreases. The structure could maintain the flow not to change basically when differential pressure change in a certain scope. When the throttle diameter turns out to be small, the flow decreases, and flow-pressure curve gradually becomes aclinic. Compared with the first-class throttle diameter, the second-class throttle diameter is the main factor which effects flow changes.


Sign in / Sign up

Export Citation Format

Share Document