Study on Modal Change Dual Planetary Composite Transmission System

2014 ◽  
Vol 620 ◽  
pp. 388-394
Author(s):  
Xue Zeng Zhao ◽  
Xi Gui Wang ◽  
Yong Mei Wang

In the study of the dynamic characteristics of the system, should pay attention to the influence on the dynamic performance of the system mode change. Mode change is closely related with mutation phenomena of mode localization process, in the natural frequency with the change of parameters, with a large curvature are quickly turned to separate the two natural frequency curve in the close position. Mode change will lead to the drastic changes in the natural frequency and modal energy, the variation of system parameters is also the location of the influence degree mutation position. Based on the modal characteristics of unique two stage power branch double wide helical planetary composite transmission system, studied the mode change phenomena, reveal the modal system changes.

Author(s):  
H Bartlett ◽  
R Whalley

This paper employs hybrid modelling techniques in the investigation of the dynamic performance of ‘long’ driveshafts, which include a clutch and load, for power transmission purposes. The power transmission system considered is suitable for a wide variety of applications in which the load is coupled directly to the clutch and hence to the ‘long’ driveshaft. Owing to the length of the shaft and relatively pointwise location of the clutch and load, a distributed—lumped (D—L) description of the arrangement is investigated. This enables the behaviour of the dispersed driveline shaft to be ‘adequately’ replicated along with the connecting elements. A discrete modelling approach is adopted and analysis and simulated response characteristics are presented, thereby validating the technique. Existing results on clutch judder are referred to and the interaction between judder and the driveshaft torsional oscillation is commented upon.


1973 ◽  
Vol 6 (9) ◽  
pp. 384-388
Author(s):  
W. H. McKenzie ◽  
A. H. Richards

When using thermocouples directly connected to ultra-violet galvanometers for recording temperature transients, the low-voltage outputs necessitate the use of galvanometers with low natural frequencies. This puts a limitation on the overall dynamic performance. In a particular application, the user has to select the damping resistor for the galvanometer and the work describes how this is done so that the system is optimised for minimum integrated errors during a transient. The transient considered was of an exponential type which occurs frequently in practice and it is shown that the correct damping ratio and hence damping resistor for the galvanometer depends upon the non-dimensional parameter defined by the product of the natural frequency of the galvanometer and the time constant of the exponential. The results show that the usual value of damping ratio of 0·64 based on minimum sinusoidal distortion has to be modified for best dynamic performance. However, if the non-dimensional parameter is sufficiently large, higher values of damping can be used, which produce a large trace with acceptably small errors.


2012 ◽  
Vol 215-216 ◽  
pp. 974-977 ◽  
Author(s):  
Li Ming Lian ◽  
Gui Min Liu

The dynamic performance of asymmetric involute gear transmission system is analyzed by the MSC.ADAMS software during the paper. By comparative analyzed with the traditional dynamic characteristics of symmetrical involute straight gear transmission, it can be summarized that the asymmetric involute gear transmission system has better vibration characteristics in the course of transmission.


Author(s):  
Wen-Bin Shangguan ◽  
Yumin Wei ◽  
Subhash Rakheja ◽  
Xu Zhao ◽  
Jun-wei Rong ◽  
...  

The natural frequency is the key performance parameters of a rubber materials damper, and it is determined by the static and dynamic shear properties of the rubber materials (rubber ring) and the moment of inertia of the inertia ring. The rubber ring is usually in compression state, and its static and dynamic shear properties are dependent on its sizes, compression ratio and chemical ingredients. A special fixture is designed and used for measuring static and dynamic shear performance of a rubber ring under different compression ratios in the study. To characterize the shear static and dynamic performances of rubbers, three constructive models (Kelvin-Voigt, the Maxwell and the fractional derivative constitutive model) are presented and the method for obtaining the model parameters in the fractional derivative constructive models are developed using the measured dynamic performance of a rubber shear specimen. The natural frequency of a rubber materials damper is calculated using the fractional derivative to characterize the rubber ring of the damper, and the calculated frequencies are compared with the measurements.


2014 ◽  
Vol 615 ◽  
pp. 313-316
Author(s):  
Zai Liang Chen ◽  
Luo Hong Deng ◽  
Cong Jing

Designed new table for large floor boring and milling machine, used ANSYS to optimize the structure of the table as a whole. According to the contours of removable material the materials which can be removed, obtained the inner ribs layout of table and the sand holes location of rib plate. Dynamic optimization variables on basic ribs cell, studied the effect of steel lattice structure parameters influenced on the natural frequency of the lattices and the related parameter of lattices influenced on whole table, to get the ideal rib lattice structure after optimizing again. Optimized bench can reduce quality, increase rigidity and dynamic performance.


2012 ◽  
Vol 192 ◽  
pp. 201-206
Author(s):  
Zhi Xin Chen ◽  
Shuai Liu

In order to reduce the influence of the bench extraction equipment from the working deep-water exploration ship when it has swing or heave movement by wind and waves, according to the work condition and the structural parameters of 3000m deep-water exploration ship, Pump-controlled type and valve-controlled type hydraulic transmission system for waves compensation of deep-water exploration ship bench extraction equipment was researched through analysing and calculating. Wire rope which drags the bench is maintained appropriate tensioning status using this wave compensation system, when bench downs to the bottom of the sea. This system can bind and release wire rope to compensate for heave motion automatically, in order to keep the stability and security of the deep-water exploration ship before bench loading the bottom. Dynamic performance of wave compensation system is improved through controlling supplementation pressure and the accumulator parameters precisely.


Author(s):  
Shuncong Zhong ◽  
S. Olutunde Oyadiji

This paper proposes a response-only method in frequency domain for structural damage detection by using the derivative of natural frequency curve of beam-like structures with a traversing auxiliary mass. The approach just uses the response time history of beam-like structures and does not need the external source of force excitation. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in flexibility and inertia of the beam as the auxiliary mass is traversed along the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitating locating the damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the Fast Fourier Transform of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. A spectrum correction method is employed to estimate high accurate frequencies of structures with a traversing auxiliary mass. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the Finite Element Analysis. The graphical plots of the natural frequencies versus axial location of auxiliary mass are obtained. The derivatives of natural frequency curve can provide crack information for damage detection of beam-like structures. However, it is suggested that the derivative do not go beyond the third derivative of natural frequency curves to avoid the difference approximation error which will be magnified at higher derivative. The sensitivity of crack index for different noise, crack depth, auxiliary mass and damping ratio are also investigated. The simulated result demonstrated the efficiency and precision of the response-only frequency-domain method which can be recommended for the real application in structural damage detection.


Sign in / Sign up

Export Citation Format

Share Document