Effect of Area Ratio of Coarse Aggregate on Erosion Resistance of Offshore Concrete Structure

2014 ◽  
Vol 627 ◽  
pp. 393-396
Author(s):  
Jun Hyoung Park ◽  
Jung Jun Park ◽  
Jae Heum Moon ◽  
Sung Wook Kim

This study investigates the effects of the compressive strength and area ratio of coarse aggregate of concrete for offshore construction on the erosion depth. To evaluate the erosion resistance of concrete, test was performed according to ASTM C 1138 using a plain mix with design strength of 30 MPa using only Portland cement and five other mixes including different quantities of fly ash and blast furnace slag. The test results showed that the erosion depth is influenced not only by the compressive strength but also by the area ratio of coarse aggregate.

2020 ◽  
Vol XVII (3) ◽  
pp. 1-14
Author(s):  
Leila Shahryari ◽  
Maryam Nafisinia ◽  
Mohammad Hadi Fattahi

The effects of simultaneous use of recycled aggregates and ground blast furnace slag as a percentage of cement-constituting materials on different properties of fresh self-compacting concrete (SCC) are investigated in this study. To this end, three series of SCC mixtures with a fixed volume of cement paste equalling 380 ltr/m3 (2.36 gal/ft3) and the replacement ratio of coarse aggregates (fifty percent and one hundred percent) and total aggregates (zero percent, fifty percent and one hundred percent) were prepared. The water content ratios in the first, second and third series were 0.4, 0.45, and 0.5, respectively. The results of the compressive strength tests for 7-day, 14-day and 28-day cubic specimens and compressive strength and Brazilian test results for 28-day cylindrical specimens were used as control parameters governing the SCC resistive quality. The results of fresh SCC tests (including slump-flow and T50 tests, V-funnel test, and L-box test) showed that the negative effect of recycled fine aggregates on fresh SCC properties is significantly more than that of recycled coarse aggregate. However, recycled SCC with acceptable properties can be obtained with a slight increase in the amount of superplasticisers used in the presence of slag.


Author(s):  
A. Chernil'nik ◽  
D. El'shaeva ◽  
Y. Zherebtsov ◽  
N. Dotsenko ◽  
M. Samofalova

In conditions of dense urban development and a variety of engineering and geological conditions, the use of concretes with a combined aggregate of a rationally selected composition will solve the existing problem of reducing the mass of reinforced concrete structures of buildings and structures and maintaining the required strength and deformability. In this paper, studies have been carried out on the choice of a rational formulation of lightweight concrete based on expanded clay gravel, natural crushed stone and granulated blast furnace slag by varying the volume content of porous coarse aggregate and the volume content of fine aggregate in relation to the mixture. In total, 9 series of prototypes and 1 series of control samples are manufactured and tested. One series of samples includes three cubes with dimensions of 10x10x10 cm. All samples are tested in terms of density and compressive strength, the coefficient of constructive quality is determined. The results of the study shows that the introduction of expanded clay gravel into the composition of heavy concrete instead of part of the dense coarse aggregate and the replacement of the fine dense aggregate with granular blast furnace slag leads to an increase in the structural quality factor, that is, a decrease in the compressive strength of concrete is compensated for by an even more significant decrease in the density of the material, and means weight reduction. The increase in the coefficient of constructive quality of concrete based on expanded clay gravel, natural crushed stone and granulated blast-furnace slag in comparison with the control composition is 15.6 %.


2014 ◽  
Vol 496-500 ◽  
pp. 2486-2490 ◽  
Author(s):  
Jia Guo Sun ◽  
Yan Ling Gu

This study used waste concrete as a recycled coarse aggregate and added an appropriate proportion of groundgranulated blast-furnace slag (GGBFS) to formulate recycled concrete. Based on the recycled coarse aggregate and GGBFS content, 24different mixture ratios were formulated, and then an experimental study of the slumpand compressive strength of the mixtures was conducted. The results showed that because slag can improve the physical and mechanical properties and performances of ordinary concreteand can compensate for certain natural deficiencies occurring in recycled coarse aggregate,GGBFS and recycled coarse aggregate can form recycled aggregate green concrete with a slump of 170mm and a 28-day compressive strengthof 50MPa.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012017
Author(s):  
L R Mailyan ◽  
S A Stel’makh ◽  
E M Shcherban’ ◽  
D A Stroev

Abstract In the difficult conditions of modern construction, the use of concretes with a combined aggregate, if the composition is rational and the formulation and technological factors act rationally, will allow solving many existing problems. In this paper, studies were carried out on the choice of a rational formulation of lightened concrete based on foamed slag, natural crushed stone and granulated blast furnace slag by varying the volume content of a porous coarse aggregate and a fine aggregate in relation to the volume of the mixture. In total, 9 series of prototypes and 1 series of control samples were manufactured and tested. One series of samples includes three cubes with dimensions of 10x10x10 cm. All samples are tested for density, compressive strength and the coefficient of constructional quality. According to the results of the study, it was concluded that the introduction of foamed slag into the composition of heavy concrete instead of a part of a dense coarse aggregate and the replacement of a fine dense aggregate with granulated blast furnace slag leads to an increase in the coefficient of constructional quality, that is, the decrease in compressive strength of concrete is compensated by an even more significant decrease in the density of the material, and therefore a decrease in mass. The increase in the coefficient of constructional quality of concrete based on foamed slag, natural crushed stone and granulated blast furnace slag in comparison with the control composition was 14%.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


2017 ◽  
Vol 865 ◽  
pp. 282-288 ◽  
Author(s):  
Jul Endawati ◽  
Rochaeti ◽  
R. Utami

In recent years, sustainability and environmental effect of concrete became the main concern. Substituting cement with the other cementitious material without decreasing mechanical properties of a mixture could save energy, reduce greenhouse effect due to mining, calcination and limestone refining. Therefore, some industrial by-products such as fly ash, silica fume, and Ground Iron Blast Furnace Slag (GIBFS) would be used in this study to substitute cement and aggregate. This substitution would be applied on the porous concrete mixture to minimize the environmental effect. Slag performance will be optimized by trying out variations of fly ash, silica fume, and slag as cement substitution material in mortar mixture. The result is narrowed into two types of substitution. First, reviewed from the fly ash substitution effect on binder material, highest compressive strength 16.2 MPa was obtained from mixture composition 6% fly ash, 3% silica fume and 17% grinding granular blast-furnace slag. Second, reviewed from slag types as cement substitution and silica fume substitution, highest compressive strength 15.2 MPa was obtained from mortar specimens with air-cooled blast furnace slag. It composed with binder material 56% Portland composite cement, 15% fly ash, 3% silica fume and 26% air-cooled blast furnace slag. Considering the cement substitution, the latter mixture was chosen.


2014 ◽  
Vol 4 (2) ◽  
pp. 113-128 ◽  
Author(s):  
R. A. Medeiros-Junior ◽  
M. G. Lima ◽  
M. H. F. Medeiros ◽  
L. V. Real

RESUMONesse estudo foi possível observar a influência de quatro tipos de cimento brasileiros na resistência à compressão e na Resistividade Elétrica Superficial (RES) de amostras de concreto. Foram analisadas três relações água/cimento, o que resultou em doze distintas dosagens. Os resultados mostraram que os tipos de cimentos tem influência direta em ambos os ensaios. De maneira geral, quando comparado com uma série de referência, os cimentos com adição de escória de alto forno e pozolanas apresentaram redução na resistência à compressão do concreto, porém ganho na RES. O cimento com adição de pozolana é o que apresenta o maior ganho de resistência à compressão no tempo, embora tenha o menor valor absoluto. Os resultados também indicaram que a RES cresce com o tempo de ensaio e diminui com o aumento da relação a/c do concreto. Foi encontrada uma boa correlação entre os ensaios, com R² variando de 0,823 a 0,999.Palavras chaves: resistência à compressão; resistividade elétrica superficial; cimentos; escória de alto forno; pozolana.ABSTRACTThis work studied the influence of four Brazilian types of cement on the compressive strength and electrical resistivity in samples of concrete. Three water/binder ratios were analyzed, which led to the preparation of twelve different samples. The results show that the types of cement has a direct influence on both tests. In general, compared to a reference, the cements with additions of blast furnace slag and pozzolans reduced the strength, but increased the electrical resistivity. It was also observed that the cement with pozzolan showed the highest gain in strength with time, although it resulted in the lowest absolute value. The results also indicated that the electrical resistivity increases with time and decreases with higher water/binder ratios. A good correlation was found between the mentioned tests with R2 ranging from 0.823 to 0.999.Keywords: compressive strength; electrical resistivity; cements; blast fumace slag; pozzolan.


2010 ◽  
Vol 168-170 ◽  
pp. 709-715
Author(s):  
Dongsik Oh ◽  
Doheom Song ◽  
Seongseok Go

Hwangtoh (loess) has pozzolanic properties that mean it can be used as a cement admixture when activated at high temperatures, and that it can be used in combination with building materials such as fly ash or blast furnace slag. This study aimed to analyze the relationship between the compressive strength and the brick bond strength of various mortars containing hwangtoh, and also to find the optimum mixing conditions for the use of hwangtoh. It was found that the mortars’ strength properties are significantly influenced by the water/cement ratio W/C and the activated hwangtoh substitution ratio. We recommend the following materials and mixing conditions: W/C 60%, a cement substitution ratio of activated hwangtoh of 20 ~ 25%, and the addition of 10% blast furnace slag to improve the compressive strength of such mortars.


Sign in / Sign up

Export Citation Format

Share Document