The Effects of Solvents on the Solvothermal Synthesis of BiVO4 Photocatalyst Powders

2015 ◽  
Vol 659 ◽  
pp. 154-158
Author(s):  
N. Thanomsri ◽  
C. Mongkolkachit ◽  
T. Sato ◽  
X. Wu ◽  
Pornapa Sujaridworakun

In this study, the effects of different solvents such as ethanol, ethylene glycol, glycerol on the preparation of BiVO4 via solvothermal process, and the influent of calcination heat treatment were studied. The crystal structure, surface area, morphology and optical properties of the obtained BiVO4 particles were investigated by means of X-ray Diffraction (XRD), Brunauer Emmett Teller method (BET), Scanning electron microscope (SEM) and UV-Vis reflectance spectroscopy (UV-Vis DRS), respectively. XRD patterns reveal that all of the obtained BiVO4 samples prepared by solvothermal at 130°C for 4 h have monoclinic structure. The UV-Vis DRS demonstrates that the band gaps of prepared BiVO4 are about 2.38-2.40 eV. The photocatalytic activity was evaluated by photo-degradation of rhodamine B (Rh B) solution under visible light irradiation (λ>420 nm). As the results, the BiVO4 prepared by using ethanol having high crystallinity and surface area showed the highest visible light photocatalytic activity compared to using glycerol and ethylene glycerol, respectively. Furthermore, the photocatalytic activity of BiVO4 prepared by using ethylene glycerol and glycerol could be enhanced by calcination heat treatment at 500°C for 2 h.

2011 ◽  
Vol 117-119 ◽  
pp. 803-806
Author(s):  
Pei Song Tang ◽  
Hai Feng Chen ◽  
Feng Cao ◽  
Guo Xiang Pan ◽  
Min Hong Xu

The Nano-Bi2MoO6was prepared using Bi(NO3)3•5H2O and Na2MoO4•2H2O as starting materials by a hydrothermal process. The prepared Bi2MoO6product was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). It was found that the prepared nano-Bi2MoO6show narrow band gap of 2.88 eV. Consequently, the prepared nano-Bi2MoO6show high visible-light photocatalytic activity for decomposition of Rhodamine B in comparison with the commercial Degussa P25, which was ascribed to the visible-light absorption.


2016 ◽  
Vol 847 ◽  
pp. 211-217
Author(s):  
Jian Min Wang ◽  
Feng Cao ◽  
Xin Lv ◽  
Song Li ◽  
Jia Jia Cai ◽  
...  

BiVO4/Bi2VO5.5 heterogeneous nanostructures with enhanced visible light photocatalytic activity were successfully prepared by a facile one-pot solvothermal method, where diethylene glycol (DEG) was used as the solvent. The as-prepared products were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS) and UV-Vis absorption spectroscopy. The results revealed that the molar ratio of Bi3+ to VO43- played an important role in the formation of crystal and morphology. These BiVO4/Bi2VO5.5 heterogeneous nanostructures exhibited higher visible-light-driven photocatalytic efficiency compared to the pure BiVO4 and Bi2VO5.5. For the methyl orange (MO) degradation efficiency of BiVO4/Bi2VO5.5 heterogeneous nanostructures under visible light irradiation, about 95% of MO was degraded within 40min, which is much higher than pure BiVO4 and Bi2VO5.5. The enhancement of photocatalytic activity can attribute to the promoted light absorption capability and the separation efficiency of photo-generated electron-hole pairs.


2021 ◽  
Author(s):  
Senthilkumar M ◽  
C. Arunagiri

Abstract FexZn1-xO (x = 0, 0.05, 0.075, 0.1 M) nanoparticles based photocatalysts were synthesized by a chemical precipitation method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray emission (EDX) and UV–Vis spectroscopy. The photocatalytic efficiency of FexZn1-xO catalysts was assessed under visible light irradiation using the degradation of methylene blue (MB) and methyl orange (MO) dye in aqueous solution. The present investigation shows that the effect of optimized parameters (pH, catalyst dosage and initial dye concentration) and doping concentrations plays significant role in photocatalytic activity. The detailed photocatalytic mechanism for the enhancement of photocatalytic activity has also been proposed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yunling Zou ◽  
Xianshou Huang ◽  
Tao Yu ◽  
Xiaoqiang Tong ◽  
Yan Li ◽  
...  

Abstract Cu-doped TiO2 having a brookite phase and showing enhanced visible light photocatalytic activity was synthesized using a mild solvothermal method. The as-prepared samples were characterized by various techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy. Photocatalytic activity of Cu-doped brookite TiO2 nanoparticles was evaluated by photodegradation of methylene blue under visible light irradiation. The X-ray diffraction analysis showed that the crystallite size of Cu-doped brookite TiO2 samples decreased with the increase of Cu concentration in the samples. The UV-Vis diffuse reflectance spectroscopy analysis of the Cu-doped TiO2 samples showed a shift to lower energy levels in the band gap compared with that of bare phase brookite TiO2. Cu doped brookite TiO2 can obviously improve its visible light photocatalytic activity because of Cu ions acting as electron acceptors and inhibiting electron-hole recombination. The brookite TiO2 sample with 7.0 wt.% Cu showed the highest photocatalytic activity and the corresponding degradation rate of MB (10 mg/L) reached to 87 % after visible light illumination for 120 min, much higher than that of bare brookite TiO2 prepared under the same conditions (78 %).


2012 ◽  
Vol 486 ◽  
pp. 124-128 ◽  
Author(s):  
Yi Tong ◽  
Pei Song Tang

The FeVO4 nanoparticles were synthesized by a precipitation process. The FeVO4 nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectroscopy (DRS). It was found that the prepared FeVO4 nanoparticles show an average grain size of 50-80 nm in diameter, and strong visible-light absorption with absorption onset of 515 nm, indicating a narrow optical band gap of 2.4 eV. Consequently, the FeVO4 nanoparticles show high visible-light photocatalytic activity for decomposition of methyl orange.


2011 ◽  
Vol 383-390 ◽  
pp. 3188-3191
Author(s):  
Han Jie Huang ◽  
Wen Long She ◽  
Ling Wen Yang ◽  
Hai Peng Huang

A visible-light-responsive TiO2-xNx photocatalyst was prepared by a very simple method. Ammonia solution was used as nitrogen resource in this paper. The TiO2-xNx photocatalyst was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), UV-Vis diffuse reflection spectra (DRS), and X-ray photoelectron spectroscopy (XPS). The ethylene was selected as a target pollutant under visible light excitation to evaluate the activity of this photocatalyst. The new prepared TiO2-xNx photocatalyst with strong photocatalytic activity under visible light irradiation was demonstrated in the experiment.


NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


2018 ◽  
Vol 32 (17) ◽  
pp. 1850185 ◽  
Author(s):  
Yun-Hui Si ◽  
Yu Xia ◽  
Ya-Yun Li ◽  
Shao-Ke Shang ◽  
Xin-Bo Xiong ◽  
...  

A series of BiFeO3 and BiFe[Formula: see text]Mn[Formula: see text]O3 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by a hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS) and UV–Vis diffuse reflectance spectroscopy, and their photocatalytic activity was studied by photocatalytic degradation of methylene blue in aqueous solution under visible light irradiation. The band gap of BiFeO3 was significantly decreased from 2.26 eV to 1.90 eV with the doping of Mn. Furthermore, the 6% Mn-doped BiFeO3 photocatalyst exhibited the best activity with a degradation rate of 94% after irradiation for 100 min. The enhanced photocatalytic activity with Mn doping could be attributed to the enhanced optical absorption, increment of surface reactive sites and reduction of electron–hole recombination. Our results may be conducive to design more efficient photocatalysts responsive to visible light among narrow band gap semiconductors.


2014 ◽  
Vol 513-517 ◽  
pp. 33-36 ◽  
Author(s):  
Zi Chang Xie ◽  
Ying Wang ◽  
Peng Wang ◽  
Lei Zhang

In this paper, W-doped TiO2 (W-TiO2) powder was prepared in hydrothermal method by mixing TiO2 and ammonium metatungstate. The catalysts were characterized by X-ray diffraction and ultraviolet spectrophotometer. The results displayed that W-TiO2 showed an anatase crystallite structure with 2 % W content. W-element in W-TiO2 was amorphous state. The guaiacol was degraded with the W-TiO2 in the visible light. It was a model compounds of lignin existed in the plant fibers. The degradation rate of guaiacol was increased with the photocatalytic time, as high as 88.21 % after 360 min irradiation. It was concluded that the W-TiO2 had an obvious photocatalytic activity under visible light. It can be used in the photocatalytic degradation of lignin.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


Sign in / Sign up

Export Citation Format

Share Document