Influence of Antibiotics Addition in Bone Cements for Hip Arthroplasty on their Mechanical Properties: Clinical Perspective and In Vitro Tests

2016 ◽  
Vol 695 ◽  
pp. 123-127
Author(s):  
Razvan Ene ◽  
Zsombor Panti ◽  
Mihai Nica ◽  
Marian Pleniceanu ◽  
Patricia Ene ◽  
...  

Bone cement has been used for over half a century, to successfully anchor artificial joints. From its emergence there have appeared a number of types of bone cement, with the 2 major classes being bone cement with or without active substances. The one with the added antibiotics is used primarily in the treatment and revision surgery of infected total hip arthroplasty (THA), as well as a prophylactic method in primary THA in patients with high risks for this complication. The purpose of this study is to determine the mechanical properties of bone cement with added antibiotics. Over a period of 2 years, a number of 41 cases were chosen for this study: 25 with revision surgery for THA, where bone cement with antibiotics was used, and 16 with primary THA, where regular bone cement was used. A number of studies have been performed on the mechanical properties of the 2 types of cement, which determined that the cement with antibiotics presents a slightly lower compressive strength, tensile strength, elastic modulus and fatigue strength compared with regular cement. These variations, however, become more pronounced as the quantity of the antibiotic goes up. The mechanical properties of the cement with antibiotics are similar with those of the regular cement, when low doses of antibiotics are used and become more evident as the doses go up. In conclusion, the antibiotic bone cement is a trustworthy tool in the surgeon’s arsenal against infection, with minimal detriments from the mechanical view.

Author(s):  
N J Dunne ◽  
J Hill ◽  
P McAfee ◽  
R Kirkpatrick ◽  
S Patrick ◽  
...  

Bacterial infection remains a significant complication following total joint replacement. If infection is suspected when revision surgery is being performed, a large dose of antibiotic, usually gentamicin sulphate, is often blended with the acrylic bone cement powder in an attempt to reduce the risk of recurrent infection. In this in-vitro study the effect of small and large doses of gentamicin sulphate on the handling and mechanical properties of the cement, gentamicin release from the cement, and in-vitro biofilm formation by clinical Staphylococcus spp. isolates on the cement was determined. An increase in gentamicin loading of 1, 2, 3, or 4 g, in a cement powder mass of 40 g, resulted in a significant decrease in the compressive and four-point bending strength, but a significant increase in the amount of gentamicin released over a 72 h period. When overt infection was modelled, using Staphylococcus spp. clinical isolates at an inoculum of 1×107 colony-forming units/ml, an increase in the amount of gentamicin (1, 2, 3, or 4 g) added to 40 g of poly(methyl methacrylate) cement resulted in an initial decrease in bacterial colonization but this beneficial effect was no longer apparent by 72 h, with the bacterial strains forming biofilms on the cements despite the release of high levels of gentamicin. The findings suggest that orthopaedic surgeons should carefully consider the clinical consequences of blending large doses (1 g or more per 40 g of poly(methyl methacrylate)) of gentamicin into Palacos® R bone cement for use in revision surgery as the increased gentamicin loading does not prevent bacterial biofilm formation and the effect on the mechanical properties could be important to the longevity of the prosthetic joint.


2014 ◽  
Vol 2 (9) ◽  
pp. 1264-1274 ◽  
Author(s):  
Chao Fang ◽  
Ruixia Hou ◽  
Kefeng Zhou ◽  
Feibin Hua ◽  
Yang Cong ◽  
...  

Controlled in situ synthesis of MSAH-coated BaSO4 nanoparticles improves the mechanical properties and in vitro biocompatibility of the bone cements.


2000 ◽  
Author(s):  
L. D. Timmie Topoleski

Abstract Total artificial joint replacements are one of the most effective treatments for arthritis. Artificial joints are used to replace damaged cartilage and act as low-friction articulating materials in joints. During normal human walking, some of the materials used for artificial knee and hip replacements are subjected to both sliding articulation (relative motion) and cyclic loading. A common example is the CoCrMo alloy femoral surface of an artificial knee that articulates against an ultra-high-molecular-weight-polyethylene (UHMWPE) component. Other materials do not experience relative motion (at least not intentionally) and are subjected to only cyclic loading. An example is the poly(methyl methacrylate) or PMMA bone cement used to fix components of artificial joints into bones. In the case of articulating materials, both surfaces are susceptible to wear, from both second-body and third body (in the presence of abrasive particles) mechanisms. Wear of the UHMWPE has received considerable attention recently, since the polymer wear is far more obvious than the metal wear. The Biomaterials field is developing an understanding of the wear mechanisms and how to enhance the wear resistance of UHMWPE. The wear of the metal components has not received as much attention, yet materials wear as a couple; both surfaces play a role in the overall wear. In the UMBC Laboratory for Implantable Materials, we are investigating the mechanisms of CoCrMo alloy wear, and the effect of worn metal components on the wear of UHMWPE. Understanding the wear mechanisms of metal components may help to extend the life of artificial joints by allowing new articulating material combinations and joint designs. For non-articulating materials, fatigue failure is a primary concern. Fatigue of metal components is relatively rare. In the distal portion of an artificial hip, the metal hip stem is fixed into the bone by a layer of PMMA bone cement. The PMMA bone cement is far weaker and less resistant to fracture and fatigue than either the bone or the metal, and thus may be considered the mechanical “weak link” in cemented total joints. We are investigating the fatigue properties of PMMA bone cements, and studying the mechanisms of fatigue crack initiation. If we can determine how fatigue cracks start in bone cement, we may be able to develop, for example, new surgical procedures (e.g., bone preparation) that will reduce the likelihood of fatigue failure. New formulations of bone cement have been developed for both joint fixation, and also for bone repair or replacement. Understanding the failure mechanisms of bone cements may enable safe and effective new uses for new bone cements, and extend the lives of cemented artificial joints.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1258 ◽  
Author(s):  
Naresh Koju ◽  
Prabaha Sikder ◽  
Bipin Gaihre ◽  
Sarit B. Bhaduri

The present study is the first of its kind dealing with the development of a specific bioceramic which qualifies as a potential material in hard-tissue replacements. Specifically, we report the synthesis and evaluation of smart injectable calcium phosphate bone cement (CPC) which we believe will be suitable for various kinds of orthopedic and spinal-fusion applications. The smart nature of this next generation orthopedic implant is attained by incorporating piezoelectric barium titanate (BT) particles into monetite-based (dicalcium phosphate anhydrous, DCPA) CPC composition. The main goal is to take advantage of the piezoelectric properties of BT, as electromechanical effect plays a vital role in fracture healing at the defect site and bone integration with the implant. Furthermore, radiopacity of BT would help in easy detection of the CPC presence at the fracture site during surgery. Results reveal that BT addition favors important properties of bone cement such as good compressive strength, injectability, bioactivity, biocompatibility, and even washout resistance. Most importantly, the self-setting nature of the bone cements are not compromised with BT incorporation. The in vitro results confirm that the developed bone-cement abides by the standard orthopedic requirements making it apt for real-time prosthetic materials.


1995 ◽  
Vol 5 (3-4) ◽  
pp. 124-130 ◽  
Author(s):  
A. J. Ward ◽  
E. J. Smith ◽  
J. W. Barlow ◽  
A. Powell ◽  
M. Halawa ◽  
...  

Two differing cementation methods were investigated in an in vitro simulation of hip arthroplasty. The bone-cement interface pressures were recorded during cement injection and stem insertion in matched pairs of fresh cadaveric femora. Reduced viscosity cement injected with a cement gun and proximal seal was compared with injection of high viscosity cement and finger-packing in each pair. The resultant shear strength of the bone-cement interface was measured by push-out tests. Results were analysed using the Wilcoxon ranked sum test for paired samples. The Exeter method of cementation produced significantly higher mean and maximum pressures above the bleeding pressure of femoral bone at all interface levels during cement injection. This was associated with significantly greater mean shear strengths. The authors conclude that the Exeter pressurization system for cementation overcomes the effect of femoral bone bleeding and improves the quality of the bone-cement interface. This may contribute to reduction in the incidence of loosening in cement hip arthroplasty.


Author(s):  
P. Choryłek

Purpose: This paper is a review of literature where the analyses of the commonly used bone cements were carried out especially: methods of manufacturing, surgical techniques, mechanical properties, biocompatibility studies as well as possibility of improvement some properties by using additives. Design/methodology/approach: The aim of this publication is the analysis of the state of knowledge and treatment methods on compression fractures, approximation of the specifics of compression fractures, presentation of minimally invasive percutaneous surgical techniques, description of features of the most common used bone cement on matrix Poly(methyl methacrylate) – (PMMA) and presentation cement parameters which affect potential postoperative complications. Findings: In considering to review of actual state of knowledge there is a need to find the additives which allow: to reduce the polymerization temperature, improve the biocompatibility as well as mechanical properties. During the studies it was found that the additive which can meet the requirements is glassy carbon in form of powder. Practical implications: Discussion allows to prepare samples during practical work with new kind additives in composite with bone cement as matrix. Originality/value: The original in this discussion is the possibility to improve fundamental properties of the selected bone cements by using different than commonly used additives.


Author(s):  
Ehsan Basafa ◽  
Ryan J. Murphy ◽  
Michael D. Kutzer ◽  
Yoshito Otake ◽  
Mehran Armand

We report the results of planning and experimental validation of femoroplasty — augmentation of mechanical properties of the bone using polymethylmethacrylate (PMMA) bone cement injection — on osteoporotic femurs. For six pairs of osteoporotic femurs, finite element (FE) models were created using computed tomography (CT) scan data and an evolutionary method was used to optimize the cement pattern in one of the models from each pair. Using a particle method and the CT data, cement diffusion was modeled for several hypothetical augmentations and the one most closely matching the optimized pattern was chosen as the best plan. We used intra-operative navigation and a custom-designed injection device to deliver the cement into the bones precisely according to the plan. All femurs were then tested mechanically in a configuration simulating a fall to the side. Augmentation with this technique resulted in an increase in the yield load (28%) and yield energy (142%) compared to the control specimens, while only 9.8ml of cement was injected on average. Results support our hypothesis that significant improvements in the mechanical properties of osteoporotic femurs can be achieved by using minimal, and hence safe, amounts of PMMA bone cement.


RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6724-6732 ◽  
Author(s):  
Ji Li ◽  
Wei Li ◽  
Zhongli Li ◽  
Yuxing Wang ◽  
Ruiling Li ◽  
...  

The fully porous Ti6Al4V cup fabricated by the sintered technique showed high porosity, large pore size with good mechanical properties. It may be effective in achieving in vivo stability after the total hip arthroplasty.


2013 ◽  
Vol 442 ◽  
pp. 147-151
Author(s):  
Chuan Shao Wu ◽  
Fu Tsai Chiang ◽  
Jui Pin Hung

Clinical studies have proved that artificial joints may fail under prolonged gait load, which failure mechanism includes mechanical loosening and infectious loosening. Infectious loosening can be prevented by avoiding osteomyelitis, caused by bacterial infection arising from the marrow cavity, which affects the fixation function of the bone handle. As a result, use of bone cement containing various antibiotics has become an important method for prevention and treatment of infection after artificial joint replacement. This study was aimed to investigate the mechanical properties of bone cement after the addition of antibiotics through the mechanical tests. With the measurements we can then assessed the variations of mechanical strength with the dosage of antibiotics. The results showed that the dose of antibiotics directly affected the compression strength and elastic modulus of antibiotic bone cement. When the antibiotics was added more than 4.8 wt %, the cement strength was obviously affected and reduced, by 27%, indicating that during artificial hip joint replacement, the dose of antibiotics should be concerned, in order to avoid affecting the strength of bone cement and stability of the entire implant.


Sign in / Sign up

Export Citation Format

Share Document