Structure and Electrical Conductivity of Polystyrene/Carbon Black Composites Prepared by Microlayer Coextrusion

2016 ◽  
Vol 717 ◽  
pp. 38-46 ◽  
Author(s):  
Chang Jin Li ◽  
Liang Zhao Xiong ◽  
Cong Ji Yuan ◽  
Zhi Wei Jiao ◽  
Wei Min Yang

Electrically conducting composites with a structure of alternating (A-B-A)n layers were prepared by a novel microlayer coextrusion, which were consisted of alternating layers of polystyrene (PS) and layers of carbon black (CB)-filled polystyrene (PSCB). The co-continuous structure with selective location of CB in PSCB layers was controllable by changing the number of multiplying elements, and decreased the percolation threshold and electrical resistivity of multilayered composites because of the double percolation effect. In addition, the multilayered composites exhibited better mechanical properties than that of the conventional blends, which were related to the layered structure and small size of CB aggregates.

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1583 ◽  
Author(s):  
Xiang Lu ◽  
Benhao Kang ◽  
Shengyu Shi

The electrically conductive poly (lactic acid) (PLA)/recycled high-density polyethylene (HDPE)/carbon black (CB) composites with a fine co-continuous micro structure and selective localization of CB in the HDPE component were fabricated by one-step melt processing via a twin-screw extruder. Micromorphology analysis, electrical conductivity, thermal properties, thermal stability, and mechanical properties were investigated. Scanning electron microscope (SEM) images indicate that a co-continuous morphology is formed, and CB is selectively distributed in the HDPE component. With the introduction of CB, the phase size of the PLA component and the HDPE component in PLA/HDPE blends is reduced. In addition, differential scanning calorimetry (DSC) and thermos gravimetric analysis (TGA) results show that the introduction of CB promotes the crystallization behavior of the PLA and HDPE components, respectively, and improves the thermal stability of PLA70/30HDPE/CB composites. The electrically conductive percolation threshold of the PLA70/30HDPE/CB composites is around 5.0 wt %, and the electrical conductivity of PLA70/30HDPE/CB composites reaches 1.0 s/cm and 15 s/cm just at the 10 wt % and 15 wt % CB loading, respectively. Further, the tensile and impact tests show that the PLA70/30HDPE/CB composites have good mechanical properties. The excellent electrical conductivity and good mechanical properties offer the potential to broaden the application of PLA/HDPE/CB composites.


2021 ◽  
pp. 096739112110012
Author(s):  
Qingsen Gao ◽  
Jingguang Liu ◽  
Xianhu Liu

The effect of annealing on the electrical and rheological properties of polymer (poly (methyl methacrylate) (PMMA) and polystyrene (PS)) composites filled with carbon black (CB) was investigated. For a composite with CB content near the electrical percolation threshold, the formation of conductive pathways during annealing has a significant impact on electrical conductivity, complex viscosity, storage modulus and loss modulus. For the annealed samples, a reduction in the electrical and rheological percolation threshold was observed. Moreover, a simple model is proposed to explain these behaviors. This finding emphasizes the differences in network formation with respect to electrical or rheological properties as both properties belong to different physical origins.


2020 ◽  
Vol 10 (24) ◽  
pp. 8993
Author(s):  
Ilhwan You ◽  
Seung-Jung Lee ◽  
Goangseup Zi ◽  
Daehyun Lim

This study investigated the effects of carbon fiber (CF) length, electrode spacing, and probe configuration on the electrical conductivity of cement composites. Accordingly, 57 different types of samples were prepared, considering three different CF lengths, five different CF contents, three different electrode spacings, and two different probe configurations. This research found that the influence of CF length on the electrical resistivity of cement composite depends electrode spacing. For the cement composite with wide electrode spacing of 40 mm, its resistivity decreased as increasing CF length as in the previous study. However, when the electrode spacing is 10 mm, which is narrow (10 mm), the resistivity of the cement composite rather increased with increasing CF length. The results implied that when an electrode is designed for the cement composite incorporating CF, the CF length should be short compared to the electrode spacing. The percolation threshold of CF measured by the two-probe configuration was 2% or more. This is higher than that measured by the four-probe configuration (1%). At a lower CF content than 2%, the two-probe configuration gave higher resistivity of the cement composite than the four-probe configuration. However, the difference coming from the different probe configurations was marginal as increasing the CF content.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1916 ◽  
Author(s):  
Mauro Giorcelli ◽  
Mattia Bartoli

In this work we focused our attention on an innovative use of food residual biomasses. In particular, we produced biochar from coffee waste and used it as filler in epoxy resin composites with the aim to increase their electrical properties. Electrical conductivity was studied for the biochar and biochar-based composite in function of pressure applied. The results obtained were compared with carbon black and carbon black composites. We demonstrated that, even if the coffee biochar had less conductivity compared with carbon black in powder form, it created composites with better conductivity in comparison with carbon black composites. In addition, composite mechanical properties were tested and they generally improved with respect to neat epoxy resin.


2014 ◽  
Vol 188 ◽  
pp. 140-145 ◽  
Author(s):  
M. Pelíšková ◽  
P. Piyamanocha ◽  
J. Prokeš ◽  
M. Varga ◽  
P. Sáha

1992 ◽  
Vol 270 (2) ◽  
pp. 134-139 ◽  
Author(s):  
M. Sumita ◽  
K. Sakata ◽  
Y. Hayakawa ◽  
S. Asai ◽  
K. Miyasaka ◽  
...  

Nanoscale ◽  
2017 ◽  
Vol 9 (31) ◽  
pp. 11017-11026 ◽  
Author(s):  
Ming Wang ◽  
Kai Zhang ◽  
Xin-Xin Dai ◽  
Yin Li ◽  
Jiang Guo ◽  
...  

Self-segregated PDMS/MWCNT nanocomposites exhibit high piezoresistive sensitivity, low percolation threshold and an enhanced mechanical properties.


1997 ◽  
Vol 70 (1) ◽  
pp. 60-70 ◽  
Author(s):  
B. G. Soares ◽  
F. Gubbels ◽  
R. Jéro^me ◽  
E. Vanlathem ◽  
R. Deltour

Abstract Polystyrene/rubber blends have been loaded with carbon black (CB) and the filler localization in the two-phase polyblends has been studied in relation to the chemical structure of the rubber. The CB localization and the electrical conductivity are greatly influenced by the substitution of the rubber chains. In polystyrene/polybutadiene blends, the filler is localized within the polybutadiene phase. In contrast, in polystyrene/polyisoprene and polystyrene/ethylene—propylene rubber (EPM) blends, CB is mainly localized at the interface, so that the CB percolation threshold in cocontinuous two-phase polyblends is dramatically decreased.


2017 ◽  
Vol 134 (46) ◽  
pp. 45512 ◽  
Author(s):  
Olga Mysiukiewicz ◽  
Tomasz Sterzyński ◽  
Paweł Ławniczak ◽  
Maria Rogodzińska

Sign in / Sign up

Export Citation Format

Share Document