scholarly journals Influence of Carbon Fiber Incorporation on Electrical Conductivity of Cement Composites

2020 ◽  
Vol 10 (24) ◽  
pp. 8993
Author(s):  
Ilhwan You ◽  
Seung-Jung Lee ◽  
Goangseup Zi ◽  
Daehyun Lim

This study investigated the effects of carbon fiber (CF) length, electrode spacing, and probe configuration on the electrical conductivity of cement composites. Accordingly, 57 different types of samples were prepared, considering three different CF lengths, five different CF contents, three different electrode spacings, and two different probe configurations. This research found that the influence of CF length on the electrical resistivity of cement composite depends electrode spacing. For the cement composite with wide electrode spacing of 40 mm, its resistivity decreased as increasing CF length as in the previous study. However, when the electrode spacing is 10 mm, which is narrow (10 mm), the resistivity of the cement composite rather increased with increasing CF length. The results implied that when an electrode is designed for the cement composite incorporating CF, the CF length should be short compared to the electrode spacing. The percolation threshold of CF measured by the two-probe configuration was 2% or more. This is higher than that measured by the four-probe configuration (1%). At a lower CF content than 2%, the two-probe configuration gave higher resistivity of the cement composite than the four-probe configuration. However, the difference coming from the different probe configurations was marginal as increasing the CF content.

2011 ◽  
Vol 492 ◽  
pp. 185-188 ◽  
Author(s):  
Jun Jie Qin ◽  
Wu Yao ◽  
Jun Qing Zuo ◽  
Hai Yong Cao

This paper gives an assessment on the electrical conductivity of different additive fillers (graphite, multi-walled carbon nanotubes) into carbon fiber-cement based composites (CFRC). Results show that cement matrix containing 0.4% carbon fiber (CF) and 0.5% multi-walled carbon nanotubes (MWCNTs) exhibits an excellent electrical conductivity of 33.65Ω·cm. When the content of CF is below the percolation threshold (0.4% CF), adding graphite is beneficial to the electrical conduction of CFRC, which has a tremendous drift from 3991.44Ω·cm to 524.33Ω·cm as the content of graphite varies from 0% to 30%. However, when the content of CF is above the percolation threshold, adding graphite makes no advantages in the electrical conductivity of CFRC because of leading to a porosity rising. MWCNTs are useful conductive constituents for CFRC and can increase electrical conductivity by two orders of magnitude. However, excessive adding MWCNTs into CFRC will have a rapid increase of electrical resistivity on the contrary.


2007 ◽  
Vol 561-565 ◽  
pp. 729-732 ◽  
Author(s):  
Gen Sasaki ◽  
Fumiaki Kondo ◽  
Kazuhiro Matsugi ◽  
Osamu Yanagisawa

Vapor grown carbon fiber (VGCF) was sleaved in acetone with ultrasonic vibration. Then pure aluminum powders with 3 μm in average diameter was poured into VGCF containing acetone and mixed with ultrasonic vibration. The composites were fabricated by electro spark sintering. The strength, rigidity, electrical conductivity and microstructure of the composites was investigated. VGCF was distributed uniformly and no pores was observed in composite. As increasing the volume fraction of VGCF in composites, the strength of composites increased gradually but the elongation decreased. The electrical resistivity of the composites increased as increasing VGCF content, constantly. The theoretical resistivity of composites without residual stress is lower than that of experimental results. It seems that is caused by the high dislocation density and strain introduced by big difference of thermal expansion between VGCF and pure aluminum.


2001 ◽  
Vol 16 (6) ◽  
pp. 1668-1674 ◽  
Author(s):  
Ioana C. Finegan ◽  
Gary G. Tibbetts

Conducting polymers are required for applications such as radio frequency interference shielding, primerless electrostatic painting, and static discharge. We have used vapor-grown carbon fiber (VGCF) as an additive to investigate conducting thermoplastics for these applications. The electrical properties of VGCF/polypropylene (PP) and VGCF/nylon composites are very attractive compared with those provided by other conventional conducting additives. Because of the low diameter of the VGCF used, the onset of conductivity (percolation threshold) can be below 3 vol%. Because of the highly conductive nature of the fibers, particularly after a graphitization step, the composites can reach resistivities as low as 0.15 Ω cm.


Author(s):  
Rahaf Hasan ◽  
Ayman Ali ◽  
Christopher Decarlo ◽  
Mohamed Elshaer ◽  
Yusuf Mehta

The study evaluates the electrical conductivity and mechanical performance of graphite modified asphalt mixtures. The effects of air voids, carbon fiber, and binder performance grade (PG) on the electrical resistivity of graphite modified asphalt mixtures are also assessed. Three graphite grades, two asphalt binders (polymer-modified PG 76-22 and neat PG 64-22), one aggregate type, and one carbon fiber were used to produce graphite modified asphalt mixtures. The mixtures were produced without graphite (control mix, PG 76-22), with only graphite (three grades and PG 76-22), with both graphite and 1% carbon fiber (three grades and PG 76-22), and with graphite (all three grades) and PG 64-22. The electrical conductivity, resistance to rutting, resistance to cracking, and durability of these mixes were evaluated using electrical resistivity (using a multi-meter), asphalt pavement analyzer, Hamburg wheel tracking device, semi-circular bend, indirect tension cracking, and Cantabro loss tests. Test results showed that graphite improves the electrical conductivity of asphalt mixtures when added at dosages of 10% to 15% or higher by volume of binder. Graphite grades with larger particle sizes helped improve the conductivity of asphalt mixtures better than graphite grades with smaller particle sizes. Air voids (higher air voids increased resistivity), carbon fiber dosage (decreased resistivity), and binder performance grade (neat binders had lower resistivity) affected the electrical resistivity of graphite modified asphalt mixtures. Furthermore, graphite modified mixes had better rutting resistance but higher susceptibility to breakdown and cracking when compared with unmodified mixtures.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hongbo Liu ◽  
Kun Liu ◽  
Zhu Lan ◽  
Dashuang Zhang

The graphite tailing causes serious environmental pollution, and the pollution problem becomes worse and worse with the increase in graphite demands. This paper focuses on the graphite tailing concrete, which can alleviate the environment problem through utilizing graphite tailings. With the orthogonal experimental design, 16 groups of specimens were designed to investigate the compressive strength of the graphite tailing concrete, and each group had 6 specimens. The significance sequence of the influencing factors for the compressive strength was studied, including the ratio of water to cement, sand ratio, graphite tailings content, and carbon fiber content. The optimal contents of graphite tailings and carbon fiber were obtained from the further experimental study on the electrical characteristics of the graphite tailing concrete, and a regression analysis was conducted to develop the predictive mixture design relationships for the electrical resistivity of the conductive graphite tailing concrete. The experimental results show that the conductive concrete mixture containing graphite tailings and carbon fiber has satisfactory mechanical strength along with well electrical conductivity. With the increase in graphite tailings content, the compressive strength decreases slowly, but the electrical resistivity decreases much more obviously. Predictions with the proposed relationship are in reasonable agreement with experimental results. This study provides references for the graphite tailing utilization alleviating the environment problems.


2014 ◽  
Vol 960-961 ◽  
pp. 14-17 ◽  
Author(s):  
Ting Ding ◽  
Yan Liu

This paper studied the produce process of carbon fiber concrete and the workability of carbon fiber conductive concrete (CFCC) by changing the fiber content as well. Based on a proper process, the electrical resistivity of CFCC in different CF continents was discussed and the percolation threshold was obtained.


2016 ◽  
Vol 717 ◽  
pp. 38-46 ◽  
Author(s):  
Chang Jin Li ◽  
Liang Zhao Xiong ◽  
Cong Ji Yuan ◽  
Zhi Wei Jiao ◽  
Wei Min Yang

Electrically conducting composites with a structure of alternating (A-B-A)n layers were prepared by a novel microlayer coextrusion, which were consisted of alternating layers of polystyrene (PS) and layers of carbon black (CB)-filled polystyrene (PSCB). The co-continuous structure with selective location of CB in PSCB layers was controllable by changing the number of multiplying elements, and decreased the percolation threshold and electrical resistivity of multilayered composites because of the double percolation effect. In addition, the multilayered composites exhibited better mechanical properties than that of the conventional blends, which were related to the layered structure and small size of CB aggregates.


Sign in / Sign up

Export Citation Format

Share Document