Thermo-Mechanical Cyclic Plastic Behavior of 304 Stainless Steel at Large Temperature Ranges

2016 ◽  
Vol 725 ◽  
pp. 275-280
Author(s):  
Nobutada Ohno ◽  
Ryohei Yamamoto ◽  
Dai Okumura

Thermo-mechanical cyclic experiments on 304 stainless steel were performed at several temperature ranges which had maximum temperatures ranging from 350°C to 1000°C and a minimum temperature of 150 °C. Related isothermal cyclic experiments were also performed. Temperature-history dependent cyclic hardening significantly occurred under thermo-mechanical cyclic loading with maximum temperatures around 600°C, whereas almost no cyclic hardening was observed when the maximum temperature was 1000°C. The observed thermo-mechanical cyclic plastic behavior in the saturated state of cyclic hardening was then simulated using a cyclic viscoplastic constitutive model, leading to the following findings. It was difficult to predict the saturated thermo-mechanical cyclic behavior using only the isothermal cyclic experimental data. The saturated thermo-mechanical cyclic behavior was simulated well by introducing a cyclic hardening parameter depending on the maximum temperature. This means that the cyclic hardening parameter should not change with temperature but depend on the maximum temperature in the saturated state of cyclic hardening under thermo-mechanical cyclic loading.

1990 ◽  
Vol 112 (2) ◽  
pp. 152-157 ◽  
Author(s):  
Y. Niitsu ◽  
K. Ikegami

The cyclic elastic-plastic behavior of SUS 304 stainless steel was investigated experimentally under various temperatures and temperature-changing conditions. The specimens were cyclically loaded between fixed axial strain limits at constant temperatures in the range from room temperature to 600°C. The effects of the cyclic strain amplitude on the saturation property of cyclic hardening were obtained at various temperatures. The effects of temperature variations on the cyclic hardening were examined under the temperature conditions of changing between two different temperatures. From these experimental results, the effects of the temperature variation on the saturation properties were found under several temperature conditions. The three different hardening models accounting for these cyclic hardening properties were proposed. The experimental results were compared with the results calculated by those three cyclic hardening models.


1997 ◽  
Vol 119 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Yanyao Jiang ◽  
Peter Kurath

Current research focuses on proportional cyclic hardening and non-Massing behaviors. The interaction of these two hardenings can result in the traditionally observed overall softening, hardening or mixed behavior exhibited for fully reversed strain controlled fatigue tests. Proportional experiments were conducted with five materials, 304 stainless steel, normalized 1070 and 1045 steels, and 7075-T6 and 6061-T6 aluminum alloys. All the materials display similar trends, but the 304 stainless steel shows the most pronounced transient behavior and will be discussed in detail. Existing algorithms for this behavior are evaluated in light of the recent experiments, and refinements to the Armstrong-Frederick class of incremental plasticity models are proposed. Modifications implemented are more extensive than the traditional variation of yield stress, and a traditional strain based memory surface is utilized to track deformation history. Implications of the deformation characteristics with regard to fatigue life estimation, especially variable amplitude loading, will be examined. The high-low step loading is utilized to illustrate the effect of transient deformation on fatigue life estimation procedures, and their relationship to the observed and modeled deformation.


2018 ◽  
Vol 786 ◽  
pp. 52-56
Author(s):  
Antti Järvenpää ◽  
Matias Jaskari ◽  
Pentti L. Karjalainen

Lower cold rolling reductions before reversion annealing for the grain size refinement are desired in industrial practice. This study demonstrates the effect of a low (32%) cold rolling reduction on cyclic behavior of a partially reversed (750 °C for 0.1s) structure in a 17Cr-7Ni-N type 301LN austenitic stainless steel and compares it with those of a 63% cold rolled and annealed and with a conventional coarse-grained structure. Stress amplitude and the amount of deformation-induced martensite formed under cyclic loading at the 0.6% total strain amplitude were recorded. The results showed that the partially reversed structure after the 32% cold rolling reduction exhibits the similar cyclic stress amplitude level and slight cyclic hardening as the 63% cold-rolled counterpart does. Even though the grain size refinement remains less effective at the lower reduction, the microstructure consists of higher fractions of strong retained cold-deformed austenite and martensite phases which increase the flow resistance. However, the coarse-grained structure exhibits a much lower initial stress amplitude and much more pronounced cyclic hardening. The susceptibility of austenite to transform deformation-induced martensite is practically similar among these three structures. However, the cyclic hardening is a caused by the formation of deformation-induced martensite, and the difference in the degree of cyclic hardening results from the big difference in the strength of the austenite between the partially reversed fine-grained and coarse-grained structures.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 129 ◽  
Author(s):  
Jianming Zhan ◽  
Moucheng Li ◽  
Junxia Huang ◽  
Hongyun Bi ◽  
Qian Li ◽  
...  

The thermal fatigue behavior of type 309 austenitic stainless steel was investigated by cyclic tests ranged from 100 °C to the maximum temperatures 800 and 900 °C. The microstructures of the specimens were characterized by optical microscope, scanning electron microscope and X-ray diffraction. With changing the maximum temperature from 800 to 900 °C, the stainless steel exhibits much lower strength, higher elongation and a decrease of fatigue life about 56.6%. After the thermal fatigue failure, the specimens show micro-void coalescence fractures caused by the creep during the holding period at the maximum temperatures, and the quasi-cleavage feature also appears in the case of the maximum temperature 800 °C. During the thermal fatigue processes, the cavities usually form at the grain and twin boundaries, facilitating the initiation and growth of cracks. Furthermore, the high-temperature oxidation produces oxides on the specimen surfaces and in the cracks, deteriorating thermal fatigue properties. With an increase in the maximum temperature, the enhanced synergetic effect of strength, grain size, creep and oxidation is responsible for the accelerated fatigue failure of 309 stainless steel during the thermal cycles.


Sign in / Sign up

Export Citation Format

Share Document