Effect of Ti Addition on Corrosion Properties of As-Cast and Hot-Rolled AM60 Magnesium Alloys

2017 ◽  
Vol 750 ◽  
pp. 113-117
Author(s):  
Yavuz Sun ◽  
Nazif Ugur Aydın ◽  
Yunus Turen ◽  
Hayrettin Ahlatci ◽  
Huseyin Zengin

This study investigates the effect of Ti addition (0, 0.2, 0.5, 1wt%) on corrosion resistance of as-cast and hot rolled AM60 magnesium alloy. Corrosion behaviors were investigated by immersion tests and electrochemical analysis. The results showed that Ti addition altered the microstructure of as-cast AM60 magnesium alloy by decreasing the amount of β-Mg17Al12 eutectic phase. Homogenization treatment resulted in the dissolution of the most of the β-Mg17Al12 phases. Homogenized samples exhibited the lowest corrosion rate in immersion test while the best corrosion resistance was found for hot-rolled samples in electrochemical test. In hot-rolled state, Ti addition led to a slight change in the corrosion resistance of AM60 magnesium alloy.

2012 ◽  
Vol 19 (03) ◽  
pp. 1250025 ◽  
Author(s):  
JOTHI SUDAGAR ◽  
RUAN DEWEN ◽  
YAQIN LIANG ◽  
RASU ELANSEZHIAN ◽  
JIANSHE LIAN

Influence of surfactants on the corrosion properties of chromium-free electroless nickel deposit were investigated on AZ91D magnesium alloy. The corrosion tests were carried out by immersion test (1 M HCl) and electrochemical polarization test (3.5 wt% NaCl ). The surfactants in the electroless nickel bath increases the corrosion resistance properties of the deposit on the magnesium alloy. In addition, smoothness and amorphous plus nano-crystalline phase were increased and accounted for the significant corrosion resistance. As a consequence, the corrosion potential moved towards the positive direction and the corrosion current density decreased. The immersion tests also provided the same trend as that of electrochemical polarization test. On the whole, the study concluded that corrosion resistance was enhanced by including a surfactant in the electroless deposits on magnesium alloy.


2017 ◽  
Vol 750 ◽  
pp. 124-128
Author(s):  
Yunus Turen ◽  
Didem Güzel ◽  
Huseyin Zengin ◽  
Yavuz Sun ◽  
Hayrettin Ahlatci

In this study, the effect of Sn addition on corrosion resistance of as-cast and hot rolled AZ31 magnesium alloy was investigated. Sn additions were made by 0.2 wt%, 0.5 wt% and 1 wt%. An electric resistance furnace was used to produce alloys. Hot rolling process was performed at 350 °C by 40% thickness reduction at one rolling pass. Microstructure characterizations were performed by optical (OM) and scanning electron microscope (SEM). Immersion tests and electrochemical analyses were performed to investigate the corrosion resistance of the alloys. A 3.5% NaCl working solution at room temperature was used in both corrosion tests. The results showed that Sn addition decreased the primary dentrite size and restricted the growth of secondary dentritic arm. The as-cast structures transformed to dynamically recrystallized grain structures after hot-rolling process in all the alloys. Corrosion resistance of AZ31 magnesium alloy tended to decrease with Sn addition. This decrease was more clear in homogenized and hot-rolled states while there were some flactuations in as-cast states.


2013 ◽  
Vol 594-595 ◽  
pp. 571-574
Author(s):  
Mat Akhir Khalid Azadi ◽  
M.Z.M. Zamzuri ◽  
S. Norbahiyah ◽  
Mohd Nazree Derman

Oxide coatings on AZ91D magnesium alloy were prepared using anodizing technique with 10mA/cm2 current density for 5 minutes in electrolyte containing Mg (NO3)2 with NaVO3 as an additive. The corrosion behaviors of different coatings condition were evaluated by immersion test in 5.0% NaCl electrolyte for 72 hours. The microstructures were analyzed by Optical Microscope (OM) and Scanning Electron Microscope (SEM). It was found that coatings with the addition of NaVO3 produced homogeneous primary α-matrix and bigger β-phase (Mg17Al12) compared to untreated AZ91D magnesium alloy. The oxide film formed by anodizing in electrolyte with NaVO3 enhances the corrosion resistance of the AZ91D magnesium alloy significantly.


2014 ◽  
Vol 879 ◽  
pp. 38-42
Author(s):  
Mat Akhir Khalid Azadi ◽  
M.Z.M. Zamzuri ◽  
S. Norbahiyah ◽  
M.R.N. Liyana ◽  
M. Marina ◽  
...  

Oxide coatings on AZ91D magnesium alloy were prepared using anodizing technique with 10mA/cm2 current density for 5 minutes in electrolyte containing La (NO3) and Mg (NO3),with NaVO3 as an additive. The corrosion behaviors of different coatings condition were evaluated by immersion test in 5.0% NaCl electrolyte for 72 hours. The microstructures were analyzed by Optical Microscope (OM) and Scanning Electron Microscope (SEM). It was found that coatings with the addition of NaVO3 produced homogeneous primary α-matrix and bigger β-phase (Mg17Al12) compared to untreated AZ91D magnesium alloy. The oxide film formed by anodizing in electrolyte with NaVO3 enhances the corrosion resistance of the AZ91D magnesium alloy significantly


2020 ◽  
Vol 10 (1) ◽  
pp. 5113-5116
Author(s):  
I. H. Kara ◽  
T. A. I. Yousef ◽  
H. Ahlatci ◽  
Y. Turen

In this study, AZ31 Mg alloys with added Ca and Ce were produced by low pressure die casting and were rolled at 400°C. The corrosion properties of the materials were determined by immersion test for 72 hours at a 3.5% NaCl solution. The microstructure of the samples was investigated by light optical microscopy (LOM) and scanning electron microscopy (SEM) before the corrosion test. Twins, dynamic recrystallization (DRX), and the alloying elements have an important role in imparting the final corrosion resistance of the investigated materials.


2010 ◽  
Vol 160-162 ◽  
pp. 661-665
Author(s):  
Bai Yang Lou ◽  
Ling Yun Dong ◽  
Xiao Li

Magnesium alloys are more and more researched and used as engineering materials in recent years. In the paper, the AZ91D casting magnesium alloy was as basic material by the proper chemical pre-treatment and then was coated with epoxy resin (EP) coatings modified with polyurethane (PU) for protection. The coatings’ adhesion strength, hardness, and corrosion resistance were studied by electronic universal tester, pencil scratch hardness tester, immersion test and electrochemical test. The effect of polyurethane addition on the properties of the coating was ales investigated. The results show that PU / EP ratio of 20% mass fraction can make the basic alloy good mechanical properties and excellent corrosion resistance. The interpenetrating network formed between the epoxy resin modified with polyurethane is of more excellent mechanical and corrosion resistance than pure epoxy resin to protect the magnesium alloy matrix.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 705 ◽  
Author(s):  
Tarek Allam ◽  
Xiaofei Guo ◽  
Simon Sevsek ◽  
Marta Lipińska-Chwałek ◽  
Atef Hamada ◽  
...  

A novel medium manganese (MMn) steel with additions of Cr (18%), Ni (5%), V (1%), and N (0.3%) was developed in order to provide an enhanced corrosion resistance along with a superior strength–ductility balance. The laboratory melted ingots were hot rolled, cold rolled, and finally annealed at 1000 °C for 3 min. The recrystallized single-phase austenitic microstructure consisted of ultrafine grains (~1.3 µm) with a substantial amount of Cr- and V-based precipitates in a bimodal particle size distribution (100–400 nm and <20 nm). The properties of the newly developed austenitic MMn steel X20CrNiMnVN18-5-10 were compared with the standard austenitic stainless steel X5CrNi18-8 and with the austenitic twinning-induced plasticity (TWIP) steel X60MnAl17-1. With a total elongation of 45%, the MMn steel showed an increase in yield strength by 300 MPa and in tensile strength by 150 MPa in comparison to both benchmark steels. No deformation twins were observed even after fracture for the MMn steel, which emphasizes the role of the grain size and precipitation-induced change in the austenite stability in controlling the deformation mechanism. The potentio-dynamic polarization measurements in 5% NaCl revealed a very low current density value of 7.2 × 10−4 mA/cm2 compared to that of TWIP steel X60MnAl17-1 of 8.2 × 10−3 mA/cm2, but it was relatively higher than that of stainless steel X5CrNi18-8 of 2.0 × 10−4 mA/cm2. This work demonstrates that the enhanced mechanical properties of the developed MMn steel are tailored by maintaining an ultrafine grain microstructure with a significant amount of nanoprecipitates, while the high corrosion resistance in 5% NaCl solution is attributed to the high Cr and N contents as well as to the ultrafine grain size.


2007 ◽  
pp. 255-258
Author(s):  
Xin Sheng Huang ◽  
Kazutaka Suzuki ◽  
Akira Watazu ◽  
Ichinori Shigematsu ◽  
Naobumi Saito

2019 ◽  
Vol 121 ◽  
pp. 04004 ◽  
Author(s):  
Andrey Karasev ◽  
Ekaterina Alekseeva ◽  
Aleksey Lukianov ◽  
Pär G. Jönsson

It is known that non-metallic inclusions (NMI) that are formed during steel production and heat treatment can significantly affect the properties of final steel products. Therefore, it is very important to be able to determine the content of harmful NMI in steels. Nickel-based alloys are widely used in the oil and gas recovery industry, due to a good combination of strength and corrosion properties. Earlier studies have shown that the corrosion properties in immersion test and electrochemical tests for Ni-based EP718 alloys are slightly lower than that for 718 alloys. The focus in this study was the influence of different NMI on the corrosion resistance of these alloys. The characteristics of inclusions (such as size, morphology, and chemical composition) were analysed by using the electrolytic extraction method followed by three-dimensional investigations using SEM in combination with EDS. It was found that some non-metallic inclusions in EP718 alloys significantly reduce its corrosion resistance. It was also shown that a primary dissolution of the metal matrix occurs around certain inclusions during electrolytic extraction. Based on obtained results, the corrosion active non-metallic inclusions can be determined in these Nickel-base alloys and some recommendations for optimization of their production technology can be formulated.


2012 ◽  
Vol 229-231 ◽  
pp. 26-30
Author(s):  
Lin Bo Li ◽  
Jing Guo ◽  
Fei Peng Lou

In this paper, the corrosion behaviors of Sm-based bulk metallic glasses (BMGs) were investigated by immersion test. It was found that with Co content increasing the ability of corrosion resistance of the alloy increases for Sm-based bulk metallic glasses. A comparison study was made on the corrosion behaviors between the glassy state alloys and crystalline alloys with the same ingredients. The results show that the glassy state alloy has the better corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document