scholarly journals Ca and Ce Effect on the Corrosion Resistance of Hot-Rolled AZ31 Mg Alloys

2020 ◽  
Vol 10 (1) ◽  
pp. 5113-5116
Author(s):  
I. H. Kara ◽  
T. A. I. Yousef ◽  
H. Ahlatci ◽  
Y. Turen

In this study, AZ31 Mg alloys with added Ca and Ce were produced by low pressure die casting and were rolled at 400°C. The corrosion properties of the materials were determined by immersion test for 72 hours at a 3.5% NaCl solution. The microstructure of the samples was investigated by light optical microscopy (LOM) and scanning electron microscopy (SEM) before the corrosion test. Twins, dynamic recrystallization (DRX), and the alloying elements have an important role in imparting the final corrosion resistance of the investigated materials.

2017 ◽  
Vol 750 ◽  
pp. 107-112
Author(s):  
Hayrettin Ahlatci ◽  
Ismail Hakkı Kara ◽  
Yunus Turen ◽  
Yavuz Sun ◽  
Huseyin Zengin

Energy efficiency and decreasing emission of greenhouse gasses emerge that the importance of Mg alloys. Mg alloys can begin to supersede the steel and aluminum for structural applications, thanks to the developing of mechanical properties or corrosion resistance of Mg alloys. Rare earth metals such as Gd, Ce, Y and Nd have been utilized at AZ31 Mg alloys for this purpose in recent years. In this study, the effects of La addition and homogenization heat treatment on microstructure, hardness properties and corrosion resistance of AZ31 and modified AZ31 Mg alloys produced by low pressure die casting method were investigated.


2017 ◽  
Vol 750 ◽  
pp. 113-117
Author(s):  
Yavuz Sun ◽  
Nazif Ugur Aydın ◽  
Yunus Turen ◽  
Hayrettin Ahlatci ◽  
Huseyin Zengin

This study investigates the effect of Ti addition (0, 0.2, 0.5, 1wt%) on corrosion resistance of as-cast and hot rolled AM60 magnesium alloy. Corrosion behaviors were investigated by immersion tests and electrochemical analysis. The results showed that Ti addition altered the microstructure of as-cast AM60 magnesium alloy by decreasing the amount of β-Mg17Al12 eutectic phase. Homogenization treatment resulted in the dissolution of the most of the β-Mg17Al12 phases. Homogenized samples exhibited the lowest corrosion rate in immersion test while the best corrosion resistance was found for hot-rolled samples in electrochemical test. In hot-rolled state, Ti addition led to a slight change in the corrosion resistance of AM60 magnesium alloy.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 517
Author(s):  
Bin Sun ◽  
Lei Cheng ◽  
Chong-Yang Du ◽  
Jing-Ke Zhang ◽  
Yong-Quan He ◽  
...  

The atmospheric corrosion behavior of a hot-rolled strip with four types (I–IV) of oxide scale was investigated using the accelerated wet–dry cycle corrosion test. Corrosion resistance and porosity of oxide scale were studied by potentiometric polarization measurements. Characterization of samples after 80 cycles of the wet–dry corrosion test showed that scale comprised wüstite and magnetite had strongest corrosion resistance. Oxide scale composed of inner magnetite/iron (>70%) and an outer magnetite layer had the weakest corrosion resistance. The corrosion kinetics (weight gain) of each type of oxide scale followed an initial linear and then parabolic (at middle to late corrosion) relationship. This could be predicted by a simple kinetic model which showed good agreement with the experimental results. Analysis of the potentiometric polarization curves, obtained from oxide coated steel electrodes, revealed that the type I oxide scale had the highest porosity, and the corrosion mechanism resulted from the joint effects of electrochemical behavior and the porosity of the oxide scale. In the initial stage of corrosion, the corrosion product nucleated and an outer rust layer formed. As the thickness of outer rust layer increased, the corrosion product developed on the scale defects. An inner rust layer then formed in the localized pits as crack growth of the scale. This attacked the scale and expanded into the substrate during the later stage of corrosion. At this stage, the protective effect of the oxide scale was lost.


2013 ◽  
Vol 706-708 ◽  
pp. 1063-1067
Author(s):  
Hai Feng Lin ◽  
Liu Qing Du ◽  
Li Ping Xiong

The Liquid Surface Pressure Control is the key factor for the guarantee of Low Pressure Die Casting Quality. Regarding to the disadvantages of conventional PID Control such as pressure fluctuation, poor repeatability of the pressure curve, and so on, we propose Liquid Surface Pressure Control System (LSPCS) based on Fuzzy Adaptive PID. Design method of Fuzzy PID Controller has been discussed, and the realization methods of the hardware and software in this system are developed. This proposed system has a good performance in practice.


2011 ◽  
Vol 308-310 ◽  
pp. 785-789 ◽  
Author(s):  
De Fang Liu ◽  
Jie Tao

With the development of lightweight vehicles, lightweight alloy materials has been increasingly used in automotive industry, automobile manufacturers are therefore looking for thinner and stronger materials so that the higher requirements has became a challenge to lightweight alloy die-casting technology. The paper summarized the applications of lightweight alloys in the automotive industry, and the new advances of lightweight alloys die-casting technology, such as low pressure die-casting, semi-solid die casting, oxygenation die-casting and the combination of different die-casting technologies, and discussed the development trend of the lightweight alloy die-casting technology.


2020 ◽  
Vol 14 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Chenyao Cao ◽  
Jiang Zhu ◽  
Tomohisa Tanaka ◽  
Dinh Ngoc Pham ◽  
◽  
...  

Magnesium and magnesium-based alloys are considered ideal materials for implants in orthopedic treatment because their stiffness is close to that of human bones, and they can be absorbed gradually in the human organism. However, a major issue in their actual application is that the corrosion speed of Mg alloys is very high in aggressive environments such as the human fluids. In previous studies, many approaches have been attempted to enhance the corrosion resistance of Mg alloys. In this research, ball burnishing, a mechanical surface finishing process, is applied to improve the corrosion resistance of Mg alloys by changing its surface properties. The influence of the burnishing parameters on the corrosion resistance is investigated, and the corrosion of a treated and non-treated sample are compared. The test material used is the AZ31 Mg alloy. Firstly, a comprehensive review of the effect of burnishing on the final microstructures is reported. The influence of burnishing on grain size, work-hardened layer thickness, crystal orientation, and residual stress of the sample is discussed. Secondly, by conducting an especially designed long-term immersion test, the mass loss and surface evolution of each sample are evaluated. The experimental results indicate that, under proper processing conditions, the mass loss of the treated sample (8.8 mg) can be reduced to 36% of the non-treated one (24.2 mg). To elucidate the mechanism behind corrosion resistance enhancement by burnishing, the samples treated with the optimal processing parameters found are immersed in an aggressive solution for 1, 3, 5, and 7 days. From the results of mass loss measurement and surface structure characterization, it was found that, among pitting, general, and intergranular corrosion, pitting corrosion is the dominant corrosion mechanism. The holes enlarge because pits combine together, representing the greatest portion of mass loss. The main mechanism enhancing corrosion resistance is the size reduction of the grains on the surface induced by ball burnishing, causing a denser distribution of corrosion products in the immersion test. These corrosion products protect the material underneath accelerated corrosion.


Alloy Digest ◽  
2021 ◽  
Vol 70 (5) ◽  

Abstract Rheinfelden Castasil-21 (Ci-21, AlSi9Sr) is an aluminum-silicon-iron-strontium high pressure die casting (HPDC) alloy. It was developed by Rheinfelden Alloys GmbH and Co. KG for castings that require an outstanding combination of electrical and/or thermal conductivity. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-476. Producer or source: Rheinfelden Alloys GmbH.


2017 ◽  
Vol 11 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Eliza Romańczuk ◽  
Zbigniew Oksiuta

AbstractIn this work two austenitic stainless steels, REX734 and 316LV were tested in terms of their microstructure and corrosion properties. The REX734 is a newer generation stainless steel, with modified chemical composition, in comparison to the 316LV grade. Potentiodynamic study of corrosion resistance was conducted in physiological saline solution (0.9% NaCl solution). In spite of the similarities of microstructure, grain size and phase structure in both materials, the corrosion tests revealed that the REX734, with lower nickel and higher nitrogen content, had better corrosion resistance than 316LV. Repassivation potential in the REX734 was almost six times higher than for the 316LV steel. Superior corrosion resistance of the REX734 steel was also confirmed by surface observations of both materials, since bigger and more densely distributed pits were detected in 316LV alloy.


Sign in / Sign up

Export Citation Format

Share Document