New High Entropy Alloy for Biomedical Applications

2017 ◽  
Vol 750 ◽  
pp. 180-183 ◽  
Author(s):  
Brandusa Ghiban ◽  
Gabriela Popescu ◽  
Daniela Dumitrescu ◽  
Vasile Soare

High Entropy Alloys (HEAs) represent a new concept of metallic materials, that contain 5 or more elements, in proportions from 5 at.% to 35 at.%, and form simple solid solutions (BCC and/or FCC) instead of complicated intermetallic phases. The high degree of randomness atomic HEA, gives them excellent properties: electrical, mechanical, electrochemical, ductility, anti-corrosion properties, stable structure etc, with applications in peak thus representing a growing research. These specific features provides HEA with excellent hardness, strength and wear strength, malleability, oxidation and corrosion resistance, with potential applications in diverse industrial areas [1÷4]. Considering these properties we decide to improve biomedical alloys with this new class of HEAs.

Vacuum ◽  
2021 ◽  
Vol 187 ◽  
pp. 110072
Author(s):  
Sefa Emre Sünbül ◽  
Kürşat İçi̇n ◽  
Fatma Zehra Şeren ◽  
Ömer Şahin ◽  
Damla Dilara Çakil ◽  
...  

2021 ◽  
pp. 3-15
Author(s):  
A.V. Levenets ◽  
M.A. Tikhonovsky ◽  
V.N. Voyevodin ◽  
A.G. Shepelev ◽  
O.V. Nemashkalo

A new class of metallic materials, so-called “high-entropy alloys” (HEAs), was under review. Various definitions of these alloys are given, their main differences from the conventional alloys are indicated and the dynamics of publications in the period from the first publications in 2004 to the end of 2020 are presented. It is noted the almost exponential growth of the article numbers concerning these alloys, and the main reasons of such high interest are discussed. Experimental results of development the radiation-tolerant materials based on the concept of high-entropy alloys and study of the radiation damage mechanisms are summarised.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 200 ◽  
Author(s):  
E-Wen Huang ◽  
Guo-Yu Hung ◽  
Soo Yeol Lee ◽  
Jayant Jain ◽  
Kuan-Pang Chang ◽  
...  

This review summarizes the state of high-entropy alloys and their combinatorial approaches, mainly considering their magnetic applications. Several earlier studies on high-entropy alloy properties, such as magnetic, wear, and corrosion behavior; different forms, such as thin films, nanowires, thermal spray coatings; specific treatments, such as plasma spraying and inclusion effects; and unique applications, such as welding, are summarized. High-entropy alloy systems that were reported for both their mechanical and magnetic properties are compared through the combination of their Young’s modulus, yield strength, remanent induction, and coercive force. Several potential applications requiring both mechanical and magnetic properties are reported.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 648
Author(s):  
Diogo Castro ◽  
Pedro Jaeger ◽  
Ana Catarina Baptista ◽  
João Pedro Oliveira

High-entropy alloys (HEAs) have been around since 2004. The breakthroughs in this field led to several potential applications of these alloys as refractory, structural, functional, and biomedical materials. In this work, a short overview on the concept of high-entropy alloys is provided, as well as the theoretical design approach. The special focus of this review concerns one novel class of these alloys: biomedical high-entropy alloys. Here, a literature review on the potential high-entropy alloys for biomedical applications is presented. The characteristics that are required for these alloys to be used in biomedical-oriented applications, namely their mechanical and biocompatibility properties, are discussed and compared to commercially available Ti6Al4V. Different processing routes are also discussed.


2015 ◽  
Vol 1128 ◽  
pp. 127-133
Author(s):  
Iulia Florea ◽  
Gheorghe Buluc ◽  
Romeu Chelariu ◽  
Elena Raluca Baciu ◽  
Ioan Carcea

Using new high entropy alloy with chemical formula AlCrNiCuMn produced by high technology (induction melt method), in manufacture of new composite materials will enable the creation of new structures resistant to stress used dynamic collective protection. Specify that High Entropy Alloys are characterized as alloys consisting of approximate equal concentrations of at least five metallic elements and are claimed to favor close-packed, disordered structures due to high configurational entropy. In this study, we investigate the microstructure and corrosion properties of AlCrNiCuMn high-entropy alloys. The type of high entropy alloys manufactured was a five-component alloy of AlCrNiCuMn. The microstructure and corrosion resistance property of high-entropy alloys AlCrNiCuMn were determined by scanning electron microscopy and electrochemical workstation. Microstructural characterization was performed by electron microscopy on LMHII VegaTescan equipment using a secondary electron detector (SE) at a voltage of 30 kV electron gun.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1527
Author(s):  
Qiaoyu Li ◽  
Tengfei Ma ◽  
Yuliang Jin ◽  
Xiaohong Wang ◽  
Duo Dong ◽  
...  

The effects of Sn and Mo alloying elements on the microstructure and electrochemical properties of TiZrTaNb high entropy alloys were studied by optical microscope (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemistry. TiZrTaNb, TiZrTaNbMo and TiZrTaNbSn alloys with equal atomic ratio were prepared by the arc melting method. The results showed that the microstructure of the high entropy alloys was dendritic structure with single BCC structure. The addition of Mo and Sn elements promoted the growth of the dendritic structure and accelerated the interdendritic segregation of the TiZrTaNb alloy. The TiZrTaNbMo alloy exhibited excellent corrosion properties compared to TiZrTaNb and TiZrTaNbSn alloys based on corrosion parameters Icorr, φcorr, Ipass. The corrosion mechanism is discussed based on the corrosion morphology. The alloying elements have an important effect on the microstructure and electrochemical properties of a high entropy alloy.


2013 ◽  
Vol 815 ◽  
pp. 19-24
Author(s):  
Sheng Zhu ◽  
Wen Bo Du ◽  
Xiao Ming Wang ◽  
Guo Feng Han

High entropy alloys emerge as a new type of advanced metallic materials, which have received increasing attentions from material engineers around the world. In addition to high entropy effect based on equiatomic or near-equiatomic and containing five or more principal elements, they exhibit a cocktail effect resulting from interactions among all the elements and the indirect effects of the various elements on the performances. In this study, according to high entropy alloy design principles, corrosion-resistant elements such as Al, Ni, Cr and Mo were used to improve the anticorrosion property, Fe, Co, B and Si as solid solution elements were added to promote the formation of solid solutions with simple structure, and the wear-resisting property increased.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1073
Author(s):  
Zihui Dong ◽  
Dmitry Sergeev ◽  
Michael F. Dodge ◽  
Francesco Fanicchia ◽  
Michael Müller ◽  
...  

CoCrFeMoNi high entropy alloys (HEAs) exhibit several promising characteristics for potential applications of high temperature coating. In this study, metastable intermetallic phases and their thermal stability of high-entropy alloy CoCrFeMo0.85Ni were investigated via thermal and microstructural analyses. Solidus and liquidus temperatures of CoCrFeMo0.85Ni were determined by differential thermal analysis as 1323 °C and 1331 °C, respectively. Phase transitions also occur at 800 °C and 1212 °C during heating. Microstructure of alloy exhibits a single-phase face-centred cubic (FCC) matrix embedded with the mixture of (Co, Cr, Fe)-rich tetragonal phase and Mo-rich rhombohedron-like phase. The morphologies of two intermetallics show matrix-based tetragonal phases bordered by Mo-rich rhombohedral precipitates around their perimeter. The experimental results presented in our paper provide key information on the microstructure and thermal stability of our alloy, which will assist in the development of similar thermal spray HEA coatings.


Sign in / Sign up

Export Citation Format

Share Document