Preparation of Magnetic Zinc Ferrite Nanoparticles and their Photocatalytic Performance

2017 ◽  
Vol 757 ◽  
pp. 125-130 ◽  
Author(s):  
Chutamanut Wongyara ◽  
Preeyaporn Harnkar ◽  
Cheewita Suwanchawalit ◽  
Tarawipa Puangpetch ◽  
Kritapas Laohhasurayotin ◽  
...  

Zinc ferrites (ZnFe2O4) nanoparticles were successfully prepared by the simple co-precipitation method. The effects of calcination temperature and the amount of surfactant on the microstructure of zinc ferrite products were studied. The products were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (DRS). The XRD results confirmed the formation of a cubic spinel structure in all samples. The SEM results revealed that surfactant molecules play a crucial role to control the microstructure of the samples. All samples showed extended absorptions in the visible region. The photocatalytic results indicated that ZnFe2O4 enhanced the photocatalytic activity with increased calcination temperature. In addition, the ZnFe2O4 prepared by addition of high concentrations of surfactant gave the highest photocatalytic activity. The synthesized ZnFe2O4 can be recovered by applying an external magnetic field.

2019 ◽  
Vol 3 (4) ◽  
pp. 93 ◽  
Author(s):  
Gaim ◽  
Tesfamariam ◽  
Nigussie ◽  
Ashebir

In this study, a N-doped Cu2O/ZnO nanocomposite was prepared by a co-precipitation and thermal decomposition technique from CuCl2, 2H2O, ZnSO4, 7H2O and CO(NH2)2 as precursors. The as-synthesized nanocomposites were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared analysis (FT–IR) and an ultraviolet–visible (UV–Vis) reflectance spectrometer. From the XRD diffractogram of N-doped Cu2O/ZnO nanocomposite, cubic and hexagonal wurtzite crystal structures of Cu2O, and ZnO, respectively were identified. The UV-vis reflectance spectra illustrated that the absorption edge of N-doped Cu2O/ZnO nanocomposite is more extended to the longer wavelength than ZnO, Cu2O and Cu2O/ZnO nanomaterials. FT–IR bands confirmed the presence of ZnO, Cu2O, and nitrogen in the N-doped Cu2O/ZnO nanocomposite. Photocatalytic activity of the as-synthesized nanocomposite was tested for methyl red degradation using sunlight as an energy source by optimizing the concentration of the dye and amount of the catalyst loaded. The degradation efficiency was greater in N-doped Cu2O/ZnO nanocomposite as compared to ZnO, Cu2O and Cu2O/ZnO nanomaterials. This is due to the coupling of the semiconductors which increases the absorption and exploitation capability of solar light and increases the charge separation as well. Besides that, nitrogen doping can extend absorption of light to the visible region by decreasing the energy gap. Therefore, N-doped Cu2O/ZnO nanocomposite is a solar light-active photocatalyst which can be used in the degradation of organic pollutants.


2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


2015 ◽  
Vol 827 ◽  
pp. 43-48
Author(s):  
Annisa Noorhidayati ◽  
Mia Putri Rahmawati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.


2015 ◽  
Vol 735 ◽  
pp. 177-181
Author(s):  
Ee Ting Wong ◽  
Pei Cheng Teh ◽  
Kian Hwa Chan ◽  
Ani Idris

The magnetic nanoparticles of manganese-doped magnetite (Mn-Fe2O4) were synthesized by the simple co-precipitation method. The stable Mn2+ and Fe3+ salts in the ratio of 1:2 in aqueous solution, were added into the sodium hydroxide solution to form the Mn-Fe2O4 precipitate at temperature of 95°C. The synthesized nanoparticles were then characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) and X-ray diffraction spectroscopy (XRD). It was then entrapped in the PVA-alginate matrix to form the nanophotoadsorbent in beads form. The synthesized nanoparticles embedded bead was characterized by Scanning Electron Microscopy (SEM). The effects of various parameters, such as contact time, pH, nanoparticles dosage were investigated. The control study was also performed to reveal the performance of photo-adsorbent towards the Cu (II) removal under the light and dark conditions. It was found that the removal efficiency of the Cu (II) achieved 97.07% (1.46ppm) which complied to the WHO drinking water standard of less than 1.5ppm after 180 min treatment.


2010 ◽  
Vol 105-106 ◽  
pp. 286-288 ◽  
Author(s):  
Hai Yang Bo ◽  
Guo Qiang Tan ◽  
Hong Yan Miao ◽  
Ao Xia

Bismuth ferrite powders were synthesized by a simple citric acid complexing co-precipitation method at much lower temperature of 600°C. The work studies the calcination temperature and molar ratio of Fe and Bi on the structure and morphology. The as-prepared BiFeO3 powder was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscope and Fourier transform infrared spectrophotometer. The result shows that the phase pure BiFeO3 powders with cubic morphology were prepared as the calcination temperature was 600°C and molar ratio of Fe and Bi was 1:1. The nanoparticles was uniform with the size of about 200nm.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Febiyanto Febiyanto ◽  
Uyi Sulaeman

Synthesis of Ag3PO4 photocatalyst under the varied concentrations of AgNO3 and Na2HPO4·12H2O as starting material has been successfully synthesized using the co-precipitation method. The concentration of AgNO3 is 0.1; 0.5; 1.0; and 2.0 M, whereas Na2HPO4·12H2O is 0.03; 0.17; 0.33; and 0.67 M, respectively. The co-precipitations were carried out under aqueous solution. As-synthesized photocatalysts were examined to degrade Rhodamine B (RhB) under blue light irradiation. The results showed that varying concentrations of starting materials affect the photocatalytic activities, the intensity ratio of [110]/[200] facet plane, and their bandgap energies of Ag3PO4 photocatalyst. The highest photocatalytic activity of the sample was obtained by synthesized using the 1.0 M of AgNO3 and 0.33 M of Na2HPO4·12H2O (AP-1.0). This is due to the high [110] facet plane and increased absorption along the visible region of AP-1.0 photocatalyst. Therefore, this result could be a consideration for the improvement of Ag3PO4 photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document