Cutting Performance of Reaming Alloy Gray Cast Iron HT250 Using Carbide, Cermet and CBN Reamers

2018 ◽  
Vol 764 ◽  
pp. 261-270 ◽  
Author(s):  
X.K. Yang ◽  
Y.G. Wang ◽  
W.L. Ge ◽  
L. Chen ◽  
H. Ge

Cutting performance of reaming alloy gray cast iron HT250 using carbide, cermet and CBN reamers was studied. Experiments were conducted under constant cutting parameters and cooling strategy. Tool life, hole diameter, spindle power, surface roughness and tool wear were analyzed. The hole diameter and spindle power would keep steady when reaming with carbide reamer after 400 holes to the tool life of 1050 holes. But holes diameter reduced and spindle power increased with the number of machined holes increasing during the whole tool life when using cermet or CBN reamer. The surface roughness Rz of the holes reamed by carbide reamer was within the tolerance, although it was worse than that reamed by cermet and CBN reamer. It can be summarized that the carbide was the most suitable material for reaming alloy gray cast iron because of the longest tool life, steady hole diameter and spindle power, qualified surface roughness. After machining, crater wear and clearance wear were produced on the cermet and CBN reamer, which were caused by abrasive wear. In addition, flaking and breakages appeared on the edge of cermet reamer, which were not found on CBN reamer. However, the clearance wear of carbide reamer was smaller than that of CBN reamer, and built up edge was found along the cutting edge.

2020 ◽  
Vol 9 (1) ◽  
pp. 25-31
Author(s):  
Rosemar Batista Da Silva ◽  
Giordano Francis Vieira ◽  
Letícia Cristina Silva ◽  
Carlos Alberto Damião ◽  
Rodrigo De Souza Ruzzi ◽  
...  

Different metals can respond differently when grinding using the same abrasive grinding wheel, especially in terms of surface quality. In this context, this work aims give a contribution to the metalworking industry by presenting the results of surface finishing after grinding the following metals: VP Atlas steel grade, Gray Cast Iron and two superalloys, Inconel 718 and Ti-6Al-4V. Tests were performed with the aluminum oxide grinding wheel and with following parameters: cutting speed of 37.6 m/s and workspeed of 10 m/min. Two values of depth of cut (15 μm and 30 μm) were tested. The surface roughness (Ra and Rz parameters) were analyzed and SEM images of the machined surfaces were taken and analyzed in order to identify the cutting mechanisms and provide better results discussion. The results showed that the surface roughness increased with the depth of cut; Ra values kept below 0.48 μm for all metals tested. Regarding the machined surface quality, some cracks were observed on the gray cast iron and Ti-6Al-4V surfaces, thereby indicating their relative lower grindability compared to VP Atlas steel under the investigated conditions. No visual thermal damage was observed in the machined surfaces of the samples.


2014 ◽  
Vol 670-671 ◽  
pp. 517-521 ◽  
Author(s):  
Jian Chen ◽  
Man Feng Gong ◽  
Shang Hua Wu

WC–5TiC–10Co cemented carbides inserts were prepared and used for the cutting tool for HT250 gray cast iron. The objective was to investigate the wear mechanism when machining HT250 gray cast iron with WC–5TiC–10Co cemented carbides inserts. WC–10Co cemented carbides with the same sintering technology and grain size were prepared for comparison. wear mechanism was examined at the same cutting parameters. The cutting tests were performed at a speed of 120 m/min with feed rate of 0.2 mm/rev and a constant depth of cut of 0.2 mm under dry conditions. Tool wear mechanism is analyzed by SEM and EDS. Adhesive and built-up-edge were found to be the predominant tool wear for WC–5TiC–10Co cemented carbides inserts. However, Attrition was the main wear mechanisms observed in WC–10Co cutting tools. The results obtained indicated that WC–5TiC–10Co cutting tools performed better than WC–10Co cutting tools, in terms of tool wear with current parameters.


2014 ◽  
Vol 1024 ◽  
pp. 215-218 ◽  
Author(s):  
Fazliana Fauzun ◽  
Syarifah Nur Aqida ◽  
Md Saidin Wahab ◽  
Wahab Saidin

This paper presents laser surface modification of gray cast iron for enhanced surface hardness properties. A 300 W high power Nd:YAG laser system with pulse mode was used to modify gray cast iron samples surface. Laser processing was conducted using a 33 full factorial design. Three controlled parameters were laser power, pulse duration and overlap percentage. The modified surface was characterised for metallographic study, roughness and hardness. Metallographic study and surface morphology were conducted using optical microscope while hardness properties were measured using Vickers scale. Surface roughness was measured using a 2D stylus profilometer. The results show that hardness of laser modified surface increased due to grain refinement. The overlapping rates increased significantly with decreasing laser scanning speed which affected sample surface integrity. Low surface roughness obtained at the highest scanning speed of 1400 mm/min, and low power of 830 W with pulse repetition frequency of 50 Hz. Process optimization was carried out for maximum surface hardness and laser modified depth, and minimum surface roughness. These findings indicate potential application of cast iron for high wear resistant applications through laser surface modification.


Sign in / Sign up

Export Citation Format

Share Document