Changes in the Crystal Structure of Cement Mortars Subjected to a High Temperature

2019 ◽  
Vol 808 ◽  
pp. 165-171
Author(s):  
Maria Ratajczak ◽  
Michał Babiak ◽  
Piotr Kulczewski

During the fire, structures of a building are exposed to the effect of a high temperature. As a result, the strength parameters and physical properties of concretes and cement mortars undergo change. Their range depends on the time and temperature of the fire. Describing the changes of the internal structure of concretes and mortars resulting from a fire is important in the fire diagnostics of the structures. The paper presents the results of an original research project, within which there was an attempt to relate changes in mechanical properties of the cement mortars with changes in the crystal structure of cement paste. For this purpose, the authors prepared cement prisms, which were heated at various temperatures that occur during a fire after 28 days of their curing. Then, the samples were subjected to compressive strength tests and tests of a structure and a phase composition using an electron scanning microscope. Scanning microscopy is a precious research method that allows observing surfaces of various materials with magnifications from x50 to even x1000000 at a very big sharpness depth. The tests conducted by the authors showed that the effect of fire and of the gradient of high temperatures on the executed samples causes the deterioration of the cement paste in the form of changes in physico-mechanical properties and in its internal structure. As the temperature increases, the compressive strength of the paste decreases gradually and proportionally. The SEM analysis also showed that the change in the physical parameters of the cement paste is reflected in its phase composition.

2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


Author(s):  
Georg Frommeyer ◽  
Sven Knippscheer

Aluminum-rich intermetallic compounds of the Al3X-type with transmission metals (X = Ti. Zr, Nb, V) of Groups IVb and Vb are of interest in the development of novel high-temperature and lightweight structural materials. This article describes the important physical and mechanical properties of trialuminides with DO22 structure and their L12 variations. Topical coverage includes: crystal structure and selected physical properties, plastic deformation, oxidation behavior, and applications.


2019 ◽  
Vol 2 (2) ◽  
pp. 126-136
Author(s):  
M.I Retno Susilorini ◽  
Budi Eko Afrianto ◽  
Ary Suryo Wibowo

Concrete building safety of fire is better than other building materials such as wood, plastic, and steel,because it is incombustible and emitting no toxic fumes during high temperature exposure. However,the deterioration of concrete because of high temperature exposure will reduce the concrete strength.Mechanical properties such as compressive strength and modulus of elasticity are absolutely corruptedduring and after the heating process. This paper aims to investigate mechanical properties of concrete(especially compressive strength and modulus of elasticity) with various water-cement ratio afterconcrete suffered by high temperature exposure of 500oC.This research conducted experimental method and analytical method. The experimental methodproduced concrete specimens with specifications: (1) specimen’s dimension is 150 mm x 300 mmconcrete cylinder; (2) compressive strength design, f’c = 22.5 MPa; (3) water-cement ratio variation =0.4, 0.5, and 0.6. All specimens are cured in water for 28 days. Some specimens were heated for 1hour with high temperature of 500oC in huge furnace, and the others that become specimen-controlwere unheated. All specimens, heated and unheated, were evaluated by compressive test.Experimental data was analyzed to get compressive strength and modulus of elasticity values. Theanalytical method aims to calculate modulus of elasticity of concrete from some codes and to verifythe experimental results. The modulus elasticity of concrete is calculated by 3 expressions: (1) SNI03-2847-1992 (which is the same as ACI 318-99 section 8.5.1), (2) ACI 318-95 section 8.5.1, and (3)CEB-FIP Model Code 1990 Section 2.1.4.2.The experimental and analytical results found that: (1) The unheated specimens with water-cementratio of 0.4 have the greatest value of compressive strength, while the unheated specimens with watercementratio of 0.5 gets the greatest value of modulus of elasticity. The greatest value of compressivestrength of heated specimens provided by specimens with water-cement ratio of 0.5, while the heatedspecimens with water-cement ratio of 0.4 gets the greatest value of modulus of elasticity, (2) Allheated specimens lose their strength at high temperature of 500oC, (3) The analytical result shows thatmodulus of elasticity calculated by expression III has greater values compares to expression I and II,but there is only little difference value among those expressions, and (4)The variation of water-cementratio of 0.5 becomes the optimum value.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012075
Author(s):  
AA Dmitrievskiy ◽  
DG Zhigacheva ◽  
VM Vasyukov ◽  
PN Ovchinnikov

Abstract In this work, the phase composition (relative fractions of monoclinic m-ZrO2, tetragonal t-ZrO2, and cubic c-ZrO2 phases) and mechanical properties (hardness, fracture toughness, compressive strength) of alumina toughened zirconia (ATZ) ceramics, with an addition of silica were investigated. Calcium oxide was used as a stabilizer for the zirconia tetragonal phase. It was shown that CaO-ATZ+SiO2 ceramics demonstrate increased resistance to low-temperature degradation. The plasticity signs at room temperature were found due to the SiO2 addition to CaO-ATZ ceramics. A yield plateau appears in the uniaxial compression diagram at 5 mol. % SiO2 concentration. It is hypothesized that discovered plasticity is due to the increased t→m transformability.


2021 ◽  
Vol 2109 (1) ◽  
pp. 012019
Author(s):  
Xuelian Yuan ◽  
Jie Hu

Abstract Through using cube resisting compression test, fracture properties and micro-structure, the mechanical properties of high volume ground slag concrete under low temperature are studied in this paper. The results show that low temperature can improve the compressive strength of high volume ground slag concrete. And strength increased with the decreased of temperature. Low temperature can also improve the fracture energy and fracture toughness. Not only can ground slag reduce the content of calcium hydroxide in hardened cement paste, but ground slag can improve the compactness of hardened cement paste, reduce porosity and improve the strength of the interface.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lei Liu ◽  
Xiang Meng ◽  
Hao Qin ◽  
Zhaozhao Chang

Studying the high-temperature mechanical properties of rocks is of great significance to engineering disasters caused by deep rock mining and underground protection projects. In view of insufficient research on the high-temperature mechanical properties of deep rocks in southwestern China, we used high-temperature heating devices and statics equipment to conduct static tests on Skarn. XW7L-12 box-type resistance furnace was adopted to heat Skarn (25°C, 200°C, 400°C, 600°C, and 800°C), and the temperature effect of its basic physical parameters (density and wave velocity) was measured and analyzed. Uniaxial compression experiments were performed on two cooling methods of Skarn (natural cooling and water cooling) by a constant stress pressure testing machine to obtain a stress-strain curve and analyze its statics index (peak strength, tensile strength, elastic modulus, and peak strain) and the change rule of failure mode with temperature rise and different cooling methods. With the temperature increasing, various static mechanical indexes of Skarn will be greatly affected. Meanwhile, the different cooling methods are not related to the change trend of the mechanical properties of Skarn under high temperature.


2013 ◽  
Vol 275-277 ◽  
pp. 2107-2111
Author(s):  
Qiu Lin Zou ◽  
Jun Li ◽  
Zhen Yu Lai

Barite concrete with density grade of 3 and strength grade of C30 was prepared by mixing with different fineness of fly ash. The workability, mechanical properties and long-term high temperature performance of the prepared barite concrete were researched. Results show that the workability of barite concrete is improved by mixing with fly ash, and no segregation of mixture has been observed. The apparent density and 3d, 28d compressive strength of barite concrete are decreased obviously after mixing with fly ash. But with the increasing of the fineness of fly ash, the apparent density and 3d, 28d compressive strength of barite concrete have a slight increase. High temperature residual compressive strength is decreased with the increasing of temperature. The cycle times of heat treatment at 400°C only has a little effect on residual compressive strength of barite concrete.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Sign in / Sign up

Export Citation Format

Share Document