The Synthesis of Polyethersulfone (PES) Derivatives for the Immobilization of Lipase Enzyme

2019 ◽  
Vol 811 ◽  
pp. 14-21
Author(s):  
Nurlaela Rahmahwati ◽  
Deana Wahyuningrum ◽  
Anita Alni

Nowadays the development of biodiesel production as an alternative renewable energy became crucial. The reusability of enzymes as biocatalysts in biodiesel production has limitations and can be improved by the immobilization process onto the appropriate solid support, such as polyethersulfone (PES). Polyethersulfone has been synthesized utilizing microwave-assisted reaction method (400 W, 170 °C, 60 minutes). Nitration reaction of PES was performed by refluxing the synthesized PES with the mixtures of H2SO4 (0 °C, ± 30 minutes) and HNO3 (25 °C, 4 hours). The –NO2 groups of the synthesized PES-NO2 was subsequently reduced to be PES-NH2 using SnCl2.2H2O as reducing agent by reflux method (60 °C, ± 3 hours). The structure of PES and its derivatives was confirmed by FTIR and 1H-NMR. Candida antarctica lipase was successfully immobilized onto the synthesized PES and its derivatives, which were confirmed by its FTIR spectra and its activity tests of the supernatants in hydrolyzing p-nitrophenol palmitate (pNPP) into p-nitrophenol (pNP). The results showed that the conversion percentage of pNPP to become pNP were 20.6% (free enzyme), 18.9% (PES-enzyme), and 3.7% (PES-NH2-enzyme). The decrease in the supernatant enzyme activity showed that the enzyme has been successfully immobilized through physical adsorption onto the synthesized polymers.

2020 ◽  
Vol 4 (3) ◽  
pp. 1199-1207
Author(s):  
Amruta P. Kanakdande ◽  
Chandrahasya N. Khobragade ◽  
Rajaram S. Mane

The continuous rising demands and fluctuations in the prices of fossil fuels warrant searching for an alternative renewable energy source to manage the energy needs.


2020 ◽  
Vol 18 (1) ◽  
pp. 874-881
Author(s):  
Laras Prasakti ◽  
Sangga Hadi Pratama ◽  
Ardian Fauzi ◽  
Yano Surya Pradana ◽  
Arief Budiman ◽  
...  

AbstractAs fossil fuels were depleting at an alarming rate, the development of renewable energy has become necessary. One of the promising renewable energy to be used is biodiesel. The interest in using third-generation feedstock, which is microalgae, is rapidly growing. The use of third-generation biodiesel feedstock will be more beneficial as it does not compete with food crop use and land utilization. The advantageous characteristic which sets microalgae apart from other biomass sources is that microalgae have high biomass yield. Conventionally, microalgae biodiesel is produced by lipid extraction followed by transesterification. In this study, combination process between hydrothermal liquefaction (HTL) and esterification is explored. The HTL process is one of the biomass thermochemical conversion methods to produce liquid fuel. In this study, the HTL process will be coupled with esterification, which takes fatty acid from HTL as raw material for producing biodiesel. Both the processes will be studied by simulating with Aspen Plus and thermodynamic analysis in terms of energy and exergy. Based on the simulation process, it was reported that both processes demand similar energy consumption. However, exergy analysis shows that total exergy loss of conventional exergy loss is greater than the HTL-esterification process.


ChemInform ◽  
2010 ◽  
Vol 32 (46) ◽  
pp. no-no
Author(s):  
Mazzahir Kidwai ◽  
Pooja Sapra ◽  
Kumar Ranjan Bhushan ◽  
Preeti Misra

e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Saeed Zahmatkesh ◽  
Abdol Reza Hajipour

AbstractPyromellitic dianhydride (1) was reacted with L-leucine (2) to result in [N,N'-(pyromellitoyl)-bis-L-leucine diacid] (3). This compound (3) was converted to N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride (4) by reaction with thionyl chloride. The microwave-assisted polycondensation of this diacid chloride (4) with polyethyleneglycol-diol (PEG-200) and/or three synthetic bisphenols furnish a series of new PEIs and Co-PEIs in a laboratory microwave oven (Milestone). The resulting polymers and copolymers have inherent viscosities in the range of 0.31- 0.53 dl g-1. These polymers are optically active, thermally stable and soluble in polar aprotic solvents such as DMF, DMSO, NMP, DMAc and sulfuric acid. All of the above polymers were fully characterized by IR spectroscopy, 1H NMR spectroscopy, elemental analyses, specific rotation and thermal analyses. Some structural characterizations and physical properties of these optically active PEIs and Co-PEIs are reported.


2013 ◽  
Vol 180 ◽  
pp. 26-30 ◽  
Author(s):  
K. Gangadhara Reddy ◽  
G. Madhavi ◽  
B.E. Kumara Swamy ◽  
Sathish Reddy ◽  
A.Vijaya Bhaskar Reddy ◽  
...  

2019 ◽  
Vol 172 (1) ◽  
pp. 1-11
Author(s):  
Veli Gokhan Demir ◽  
Hayrettin Yuksel ◽  
Hasan Koten ◽  
M. Zafer Gul ◽  
Hakan S. Soyhan

2015 ◽  
Vol 3 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Evandro L. Dall'Oglio ◽  
Paulo T. de Sousa ◽  
Leonardo Gomes de Vasconcelos ◽  
Carlos Adriano Parizotto ◽  
Ewerton Ferreira Barros ◽  
...  

Perspektif ◽  
2016 ◽  
Vol 14 (2) ◽  
pp. 87 ◽  
Author(s):  
DIBYO PRANOWO ◽  
MAMAN HERMAN ◽  
. SYAFARUDDIN

<p>ABSTRAK<br /><br />Kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw) merupakan salah satu jenis tanaman penghasil minyak nabati yang memiliki potensi besar sebagai sumber bahan baku untuk biodiesel. Tingkat produktivitas yang dapat mencapai 8-9 ton minyak kasar atau setara dengan 6-8 ton biodiesel/ha/tahun memiliki nilai strategis terkait dengan program pemerintah dalam mencari alternatif sumber energi baru yang terbarukan. Pengembangan sumber energi terbarukan seperti yang berasal dari minyak nabati kemiri sunan merupakan salah satu alternatif dalam upaya memenuhi defisit energi untuk keperluan domestik sehingga Indonesia dapat keluar dari himpitan krisis energi. Lahan-lahan yang telah terdegradasi di Indonesia dari tahun ke tahun luasnya semakin bertambah baik karena faktor alam maupun karena eksploitasi yang tidak terkendali. Disisi lain pengembangan tanaman sumber BBN terkendala karena keterbatasan lahan. Kajian yang telah dilakukan secara intensif terhadap karakteristik tanaman, minyak dan biodiesel yang dihasilkannya, serta daya adaptasinya yang sangat luas terhadap beragam agroekosistem yang ada di Indonesia, tanaman kemiri sunan memberikan harapan yang baik disamping sebagai sumber bahan baku biodiesel, juga dapat berfungsi sebagai tanaman konservasi untuk mereklamasi lahan-lahan marginal yang telah terdegradasi. Disamping itu, pengembangan tanaman kemiri sunan di lahan yang telah terdegradasi tidak hanya akan dapat meningkatkan nilai ekonomi lahan tersebut, tetapi juga dapat dijadikan tanaman yang bernilai ekonomi tinggi, serta mampu menyediakan kebutuhan energi bagi masyarakat sekitar maupun ke wilayah yang lebih luas. <br />Kata kunci: Kemiri sunan, biodiesel, energi baru terbarukan, lahan terdegradasi, lahan bekas tambang.<br /><br />ABSTRACT</p><p>The Multiple Benefits of Developing Kemiri Sunan (Reutealis trisperma (Blanco) Airy Shaw) In Degraded Land<br /><br />Kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw) is one kind of vegetable oil crops that have great potential as a source of raw material for biodiesel. The productivity level that can reach 8-9 tons of crude oil, equivalent to 6-8 tons of biodiesel/ha/year make as a strategic commodity associated with government programs to find alternative sources of renewable energy. Development of renewable energy such as from vegetable oils of kemiri sunan is one of the alternatives in an effort to solve the deficit of energy for domestic use so that Indonesia can way out of the crush of the energy crisis. Lands that have been degraded in Indonesia continuously increasing both cause of the extent of natural factors and uncontrolled exploitation. On the other hand the development of this plants retricted by aviability of land. The research88 Volume 14 Nomor 2, Des 2015 : 87 - 101 studies have been conducted on the characteristics of plants, oil and biodiesel production, and adaptability in very broadly of Indonesian agro-ecosystem, this plant show well hopes besides as a source of raw material for biodiesel, it can also function as a conservation plant to reclaim marginal lands that have been degraded. In addition, the development of kemiri sunan on degraded land will not only be able to increase the economic value of the land, but also can be used as crops of high economic value, and able to provide for the energy needs of the surrounding communities and to the wider region.<br />Keywords: Reutealis trisperma (Blanco) Airy Shaw, biodiesel, renewable energy, degraded land, post mained land.</p>


2019 ◽  
Vol 8 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Samira Emami ◽  
Mir Mohammad Alavi Nikje

Abstract Polycarbonate (PC) wastes, including optical discs (CDs) and digital optical discs (DVDs), were chemically recycled into valuable materials such as 4,4′-(propane-2,2-diyl)diphenol (BPA) and etherified derivatives of BPA using sodium hydroxide (NaOH) as the alkali metal catalyst and nanostructured titanium dioxide (nano-TiO2) and microstructured titanium dioxide (micro-TiO2) as the solid supports in the binary green system consisting of water and 2,2′-oxydi(ethan-1-ol) (DEG) under conventional heating method, and data were compared. In this study, the effects of various parameters, such as solvent composition, concentration of NaOH, and solid support, were studied on the reaction progress. In these reactions, the importance of water as the green solvent was investigated in achieving pure BPA as the valuable material. When used with 20% aqueous DEG (pbw), a pure BPA can be obtained at 70% yield in the presence of nano-TiO2 and micro-TiO2 as the solid supports. According to the results, the use of nano-TiO2 in comparison with micro-TiO2 accelerates the chemical recycling of PC wastes. The nano-TiO2 catalyst recovery shows that the recovered solid support is applicable for four cycles. The obtained products were characterized using spectroscopic methods, namely, 1H NMR, 13C NMR, and Fourier transform infrared spectroscopy as well as gas chromatography-mass spectrometry.


Sign in / Sign up

Export Citation Format

Share Document