Catechol-Bearing Hyaluronic Acid Coated Polyvinyl Pyrrolidone/Hydroxyl Propyl-β-Cyclodextrin/Clotrimazole Nanofibers for Oral Candidiasis Treatment

2019 ◽  
Vol 819 ◽  
pp. 163-168 ◽  
Author(s):  
Chaiyakarn Pornpitchanarong ◽  
Kanokwan Singpanna ◽  
Theerasak Rojanarata ◽  
Praneet Opanasopit ◽  
Tanasait Ngawhirunpat ◽  
...  

This research aimed to develop clotrimazole (CT)-loaded mucoadhesive nanofiber patches for oral candidiasis. The three-layered sandwich-like nanofiber patches were prepared by electrospinning technique. The spinning solution for the middle layer composed of 8 %wt polyvinylpyrrolidone (PVP), 90 mM hydroxy propyl-β-cyclodextrin (HPβCD) and 10 % (wt to polymer) of CT in a solvent mixture of ethanol:water:benzyl alcohol. The outer layers were fabricated from a mixture of 1 %wt hyaluronic acid (HA) or catechol bearing hyaluronic acid (HA-cat) and 10 %wt polyvinyl alcohol (PVA) at varied weight ratios. The thickness of the outer layers was varied by adjusting the volume of coating polymer solution ranging from 1 to 3 mL. Desirable smooth nanosized fibers were obtained from the electrospinning process. Increasing the thickness of the outer layer brought about a significant increase in the fiber strength and flexibility. The viscosity of HA-cat/mucin mixture showed good polymer-mucin interaction indicating higher mucoadhesive property of the nanofibers. The drug loading capacity (LC) displayed the potential of the nanofibers for drug encapsulation. The highest LC value of 123.80 ± 5.61 μg/mg was obtained from the nanofibers coated with 1 mL of the coating solution. CT was rapidly released from the nanofiber in the first hour followed by a steady release. The released amount reach above 80% in 2 h. The nanofibers provided superior antifungal activity against Candida albicans compared to CT powder. Moreover, they were found to be nontoxic to the human gingival fibroblast cells. Thus, the sandwich nanofibers may be further developed to be a potential candidate for oral candidiasis treatment in the near future.

2020 ◽  
Vol 60 ◽  
pp. 101927
Author(s):  
Chaiyakarn Pornpitchanarong ◽  
Theerasak Rojanarata ◽  
Praneet Opanasopit ◽  
Tanasait Ngawhirunpat ◽  
Prasopchai Patrojanasophon

2019 ◽  
Vol 798 ◽  
pp. 53-58
Author(s):  
Pattarinee White ◽  
Sirinat Chooprajong ◽  
Piyapong Pankaew

Thunbergia laurifolia is a Thai herb that possesses outstanding wound healing properties. In addition, Sericin, obtained from the Bombyx mori silkworm, is also a potential candidate for wound healing applications. This is due to its moisture content and hydrophilic and antimicrobial properties. In this research, an electrospinning technique using Sericin and Thunbergia laurifolia was studied for wound healing purposes. Sericin solution was prepared by boiling Bombyx mori silkworm at 80 °C and Thunbergia laurifolia solution was prepared by boiling Thunbergia laurifolia leaves in distilled water at 100°C. The Sericin-Thunbergia laurifolia (STL) solution was mixed at the ratios of 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1 respectively. After mixing the solution of STL at the various ratios, all STL solutions were blended with 9 wt% PVA for the electrospinning process. The ratios of Sericin and Thunbergia laurifolia, the applied voltage and the distance between the needle tip to the target and the size of the needle were all optimized in this study. The fibre morphology was examined through SEM images. The electrospun PVA–STL fibre was found to have an average diameter in the range of 100-530 nm. The result from the SEM images showed the optimum ratio of Sericin and Thunbergia laurifolia to be 5:5. A suitable applied voltage, the distance between the needle tip to target and the size of the needle were 15 kV, 10 cm and an 18 gauge needle, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 356
Author(s):  
Athira Johnson ◽  
Fanbin Kong ◽  
Song Miao ◽  
Sabu Thomas ◽  
Sabah Ansar ◽  
...  

Periodontitis is an inflammatory disease associated with biofilm formation and gingival recession. The practice of nanotechnology in the clinical field is increased overtime due to its potential advantages in drug delivery applications. Nanoparticles can deliver drugs into the targeted area with high efficiency and cause less damages to the tissues. In this study, we investigated the antibacterial and anti-inflammatory properties of surfactin-loaded κ-carrageenan oligosaccharides linked cellulose nanofibers (CO-CNF) nanoparticles. Three types of surfactin-loaded nanoparticles were prepared based on the increasing concentration of surfactin such as 50SNPs (50 mg surfactin-loaded CO-CNF nanoparticles), 100SNPs (100 mg surfactin-loaded CO-CNF nanoparticles), and 200SNPs (200 mg surfactin-loaded CO-CNF nanoparticles). The results showed that the nanoparticles inhibited the growth of Fusobacterium nucleatum and Pseudomonas aeruginosa. The reduction in biofilm formation and metabolic activity of the bacteria were confirmed by crystal violet and MTT assay, respectively. Besides, an increase in oxidative stress was also observed in bacteria. Furthermore, anti-inflammatory effects of surfactin-loaded CO-CNF nanoparticles was observed in lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGF) cells. A decrease in the production of reactive oxygen species (ROS), transcription factor, and cytokines were observed in the presence of nanoparticles. Collectively, these observations supported the use of surfactin-loaded CO-CNF as a potential candidate for periodontitis management.


2021 ◽  
Vol 1025 ◽  
pp. 224-229
Author(s):  
Wastuti Hidayati Suriyah ◽  
Aisyah Juares Rizal ◽  
Hana Syakirah Mohamed Nadzirin ◽  
Solachuddin Jauhari Arief Ichwan ◽  
Muhammad Lokman Md. Isa

Asiaticoside is a bioactive compound found in the traditional plant Centella asiatica (Asiatic pennywort or ‘Pegaga’) generally used for wound healing applications. Numerous studies have discussed the potential benefits of asiaticoside on different human cells such as keratinocytes and dermal fibroblast cells in healing of wounds. However only very few studies have been conducted to investigate its healing effect on cells originated from human oral cavity. The present study aimed to determine the potential of asiaticoside on human gingival fibroblast cells. Cytotoxic activities of the compounds were assessed by MTT assay. The wound healing was examined by scratch assay. The effect of asiaticoside on Col1A1 gene expression was also analyzed using qRT-PCR. Col1A1 is known to play a crucial role in wound healing. The MTT assay result showed that the maximum tolerable concentration of asiaticoside was 0.25 mg/ml. The scratch assay revealed that asiaticoside significantly accelerated the wound healing compared to the negative control (P<0.05). Moreover, the qRT-PCR demonstrated that asiaticoside markedly increased Col1A1 mRNA expression. These results proved asiaticoside as a potential candidate for wound healing agent in dentistry.


Author(s):  
Christina Winter ◽  
Roman Keimel ◽  
Markus Gugatschka ◽  
Dagmar Kolb ◽  
Gerd Leitinger ◽  
...  

The intact function of the salivary glands is of utmost importance for oral health. During radiotherapy in patients with head and neck tumors, the salivary glands can be damaged, causing the composition of saliva to change. This leads to xerostomia, which is a primary contributor to oral mucositis. Medications used for protective or palliative treatment often show poor efficacy as radiation-induced changes in the physico-chemical properties of saliva are not well understood. To improve treatment options, this study aimed to carefully examine unstimulated whole saliva of patients receiving radiation therapy and compare it with healthy unstimulated whole saliva. To this end, the pH, osmolality, electrical conductivity, buffer capacity, the whole protein and mucin concentrations, and the viscoelastic and adhesive properties were investigated. Moreover, hyaluronic acid was examined as a potential candidate for a saliva replacement fluid. The results showed that the pH of radiation-induced saliva shifted from neutral to acidic, the osmolality increased and the viscoelastic properties changed due to a disruption of the mucin network and a change in water secretion from the salivary glands. By adopting an aqueous 0.25% hyaluronic acid formulation regarding the lost properties, similar adhesion characteristics as in healthy, unstimulated saliva could be achieved.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chu-nan Zhang ◽  
Lin-yi Zhou ◽  
Shu-jiao Qian ◽  
Ying-xin Gu ◽  
Jun-yu Shi ◽  
...  

Abstract Objectives This study aims to evaluate the ability of tantalum-coated titanium to improve human gingival fibroblasts’ adhesion, viability, proliferation, migration performance, and the potential molecular mechanisms. Materials and methods Titanium plates were divided into two groups: (1) no coating (Ti, control), (2) Tantalum-coated titanium (Ta-coated Ti). All samples were characterized by scanning electronic microscopy, surface roughness, and hydrophilicity. Fibroblasts’ performance were analyzed by attached cell number at 1 h, 4 h, and 24 h, morphology at 1 h and 4 h, viability at 1 day, 3 days, 5 days, and 7 days, recovery after wounding at 6 h, 12 h, and 24 h. RT-PCR, western blot were applied to detect attachment-related genes’ expression and protein synthesis at 4 h and 24 h. Student’s t test was used for statistical analysis. Results Tantalum-coated titanium demonstrates a layer of homogeneously distributed nano-grains with mean diameter of 25.98 (± 14.75) nm. It was found that after tantalum deposition, human gingival fibroblasts (HGFs) adhesion, viability, proliferation, and migration were promoted in comparison to the control group. An upregulated level of Integrin β1 and FAK signaling was also detected, which might be the underlying mechanism. Conclusion In the present study, adhesion, viability, proliferation, migration of human gingival fibroblasts are promoted on tantalum-coated titanium, upregulated integrin β1 and FAK might contribute to its superior performance, indicating tantalum coating can be applied in transmucosal part of dental implant. Clinical significance Tantalum deposition on titanium surfaces can promote human gingival fibroblast adhesion, accordingly forming a well-organized soft tissue sealing and may contribute to a successful osseointegration.


Author(s):  
Cláudio Rodrigues Rezende Costa ◽  
Bruna Rabelo Amorim ◽  
Sandra Márcia Mazutti da Silva ◽  
Ana Carolina Acevedo ◽  
Pérola de Oliveira Magalhães ◽  
...  

Nano LIFE ◽  
2012 ◽  
Vol 02 (04) ◽  
pp. 1230010 ◽  
Author(s):  
JEN-CHIEH WU ◽  
H. PETER LORENZ

Electrospinning is a process for generating micrometer or nanometer scale polymer fibers with large surface areas and high porosity. For tissue engineering research, the electrospinning technique provides a quick way to fabricate fibrous scaffolds with dimensions comparable to the extracellular matrix (ECM). A variety of materials can be used in the electrospinning process, including natural biomaterials as well as synthetic polymers. The natural biomaterials have advantages such as excellent biocompatibility and biodegradability, which can be more suitable for making biomimic scaffolds. In the last two decades, there have been growing numbers of studies of biomaterial fibrous scaffolds using the electrospinning process. In this review, we will discuss biomaterials in the electrospinning process and their applications in tissue engineering.


Inflammation ◽  
2016 ◽  
Vol 40 (1) ◽  
pp. 144-153 ◽  
Author(s):  
S. Buket Bozkurt ◽  
Sema S. Hakki ◽  
Erdogan E. Hakki ◽  
Yusuf Durak ◽  
Alpdogan Kantarci

2000 ◽  
Vol 30 (3) ◽  
pp. 599
Author(s):  
Yong-Bae Lee ◽  
Sung-Hee Pi ◽  
Tak Kim ◽  
Kwang-Soo Lee ◽  
Hyung-Keun You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document