Fibreglass Reinforced Polymer Structure Response under Different Impact Scenarios

2019 ◽  
Vol 827 ◽  
pp. 13-18
Author(s):  
Giuseppe Lamanna ◽  
Alessandro Greco ◽  
M. Manzo ◽  
Enrico Armentani ◽  
Constantin Gheorghe Opran

Composite materials are increasingly used in those fields where it is necessary to achieve the requirements of lightweight and high mechanical properties. Even though their high specific strength which get these materials very attractive, especially for the transport field, there are several critical issues that still limit their application in primary structures. Among these, dynamic loading conditions play a critical role because they can significantly lower their residual strength. This paper aims to investigate experimentally the structural response of a 25 mm thick Omega composite structure under different impact loading conditions. The investigated test article consists of E-glass fibres (40% volume fraction) reinforced polyester matrix. The structure is covered by a HELIOPOL 1401 M AGC W 11 gelcoat layer and it has been impacted through a drop mass of 3.94 kg, dropped from heights of 50 mm, 75 mm, 100 mm, 150 mm, 200 mm, 250 mm, 350 mm and 500 mm.

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 419 ◽  
Author(s):  
Abdullah H. Sofiyev ◽  
Francesco Tornabene ◽  
Rossana Dimitri ◽  
Nuri Kuruoglu

The buckling behavior of functionally graded carbon nanotube reinforced composite conical shells (FG-CNTRC-CSs) is here investigated by means of the first order shear deformation theory (FSDT), under a combined axial/lateral or axial/hydrostatic loading condition. Two types of CNTRC-CSs are considered herein, namely, a uniform distribution or a functionally graded (FG) distribution of reinforcement, with a linear variation of the mechanical properties throughout the thickness. The basic equations of the problem are here derived and solved in a closed form, using the Galerkin procedure, to determine the critical combined loading for the selected structure. First, we check for the reliability of the proposed formulation and the accuracy of results with respect to the available literature. It follows a systematic investigation aimed at checking the sensitivity of the structural response to the geometry, the proportional loading parameter, the type of distribution, and volume fraction of CNTs.


Author(s):  
Saber DorMohammadi ◽  
Mohammad Rouhi ◽  
Masoud Rais-Rohani

The newly developed element exchange method (EEM) for topology optimization is applied to the problem of blank shape optimization for the sheet-forming process. EEM uses a series of stochastic operations guided by the structural response of the model to switch solid and void elements in a given domain to minimize the objective function while maintaining the specified volume fraction. In application of EEM to blank optimization, a sheet forming simulation model is developed using Abaqus/Explicit. With the goal of minimizing the variability in wall thickness of the formed component, a subset of solid (i.e., high density) elements with the highest increase in thickness is exchanged with a consistent subset of void (i.e., low density) elements having the highest decrease in thickness so that the volume fraction remains constant. The EEM operations coupled with finite element simulations are repeated until the optimum blank geometry (i.e., boundary and initial thickness) is found. The developed numerical framework is applied to blank optimization of a benchmark problem. The results show that EEM is successful in generating the optimum blank geometry efficiently and accurately.


Author(s):  
Benjamin C. Gadomski ◽  
John Rasmussen ◽  
Christian M. Puttlitz

The human spine experiences complex loading in vivo; however, simplifications to these loading conditions are commonly made in computational and experimental protocols. Pure moments are often used in cadaveric preparations to replicate in vivo loading conditions, and previous studies have shown this method adequately predicts range of motion behavior (1, 2). It is unclear what effect pure moment loading has on the tissue-level internal mechanical parameters such as stresses in the annulus fibrosus and facet contact parameters. Recent advances in musculoskeletal modeling have elucidated previously unknown quantities of the musculature recruitment patterns such as times, forces, and directions. The advancements are especially relevant in cases of surgical intervention because the spinal musculature has been reported to play a critical role in providing additional stability to the spine when defects such as discectomy and nucleotomy are involved (2). Thus, the aim of the study was to determine the importance of computational loading conditions on the resultant global ranges of motion, as well as the tissue-level predictions of annulus fibrosus stresses, and facet contact pressures, forces, and areas.


Author(s):  
Pierclaudio Savino ◽  
Francesco Tondolo

Abstract Structural monitoring plays a key role for underground structures such as tunnels. Strain readings are expected to report structural conditions during construction and at the final delivery of the works. Furthermore, it is increasingly requested an extension to long-term monitoring from contractors with possible use of the same system in service during construction. A robust and efficient monitoring methodology from discrete strain measurements is the inverse Finite Element Method (iFEM), which allows to reconstruct the structural response without input data on the load pattern applied to the structure as well as material and inertial properties of the elements and therefore it is interesting for structural configurations affected by uncertain loading conditions, such as the tunnel. The formulation presented in this paper, based on the iFEM theory, is improved from the previous work available in literature for both the shape functions used and the computational procedure. Indeed, the approach allows to overcome inconsistencies related to structural loading conditions and a pseudo-inverse matrix preserve all the rigid body modes without imposing specific constraints which is typical for tunnels. Numerical validation of the iFEM procedure is performed by simulating the input data coming from a tunnel working in a heterogeneous soil under different loading conditions with direct FEM analysis.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2517 ◽  
Author(s):  
Christian Leopold ◽  
Sergej Harder ◽  
Timo Philipkowski ◽  
Wilfried Liebig ◽  
Bodo Fiedler

Common analytical models to predict the unidirectional compressive strength of fibre reinforced polymers are analysed in terms of their accuracy. Several tests were performed to determine parameters for the models and the compressive strength of carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP). The analytical models are validated for composites with glass and carbon fibres by using the same epoxy matrix system in order to examine whether different fibre types are taken into account. The variation in fibre diameter is smaller for CFRP. The experimental results show that CFRP has about 50% higher compressive strength than GFRP. The models exhibit significantly different results. In general, the analytical models are more precise for CFRP. Only one fibre kinking model’s prediction is in good agreement with the experimental results. This is in contrast to previous findings, where a combined modes model achieves the best prediction accuracy. However, in the original form, the combined modes model is not able to predict the compressive strength for GFRP and was adapted to address this issue. The fibre volume fraction is found to determine the dominating failure mechanisms under compression and thus has a high influence on the prediction accuracy of the various models.


Author(s):  
Jason P. Halloran ◽  
Anthony J. Petrella ◽  
Paul J. Rullkoetter

The success of current total knee replacement (TKR) devices is contingent on the kinematics and contact mechanics during in vivo activity. Indicators of potential clinical performance of total joint replacement devices include contact stress and area due to articulations, and tibio-femoral and patello-femoral kinematics. An effective way of evaluating these parameters during the design phase or before clinical use is via computationally efficient computer models. Previous finite element (FE) knee models have generally been used to determine contact stresses and/or areas during static or quasi-static loading conditions. The majority of knee models intended to predict relative kinematics have not been able to determine contact mechanics simultaneously. Recently, however, explicit dynamic finite element methods have been used to develop dynamic models of TKR able to efficiently determine joint and contact mechanics during dynamic loading conditions [1,2]. The objective of this research was to develop and validate an explicit FE model of a TKR which includes tibio-femoral and patello-femoral articulations and surrounding soft tissues. The six degree-of-freedom kinematics, kinetics and polyethylene contact mechanics during dynamic loading conditions were then predicted during gait simulation.


Sign in / Sign up

Export Citation Format

Share Document