Anodization of Highly Ordered Titania Nanotube Prepared with Organic Electrolyte

2020 ◽  
Vol 846 ◽  
pp. 23-28
Author(s):  
Bambang Suharno ◽  
Nabila Ramadhanti ◽  
Nadya Aryani ◽  
Ahmad Zakiyuddin ◽  
Sugeng Supriadi

Ti-6Al-4V as an implant material has bio-inert properties, so it does not support any tissues or bone cells reaction. This study aims to increase the tendency of osteoblast's cell attachment to the surface of implant Ti-6Al-4V by fabricating nanotube structure on the surface by anodization. This study also conducted to study the effect of elements from titanium alloys and organic electrolytes on the mechanism of formation of nanotube structures. The anodization method was chosen because it was easy to do, effective, and inexpensive. The samples were prepared by ground and polished, then washed by ultrasonic. Anodization used organic electrolytes in the form of a mixture of ethylene glycol, 0.5 M NH4F, and 4 w.t% deionized water. The study of the effect of voltage and duration time was carried out to understand the mechanism of nanotube formation, through morphological observation on the surface and cross-section area of nanotubes using SEM and characterization of elements using EDS, diameter, and length of highly ordered nanotubes was observed. The results of the characterization showed that the tube diameter is adjusted by the voltage, while duration time influence the tube length, with a linear relationship, so the widest diameter achieved at 40V 5h, but the longest tube achieved at 30 V 5h. Whereas for 5h duration, the upper part of the tube collapsed and disintegrated. The fluoride ions incorporated at the tube surfaces formed fluoride-titanium oxide cubic agglomerates, and the whole nanotube surface was oxide.

Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 35
Author(s):  
Christos Manopoulos ◽  
Giannis Savva ◽  
Achilleas Tsoukalis ◽  
Georgios Vasileiou ◽  
Nikolaos Rogkas ◽  
...  

In this study, an infusion roller pump comprising two separate innovative resilient tube designs is presented. The first incorporates the flexible tubing cross-section area in its relaxed state as a lenticular one for power reduction reasons. The second keeps the previous lenticular cross-section along its length, while it additionally incorporates an inflating portion, for creating a momentary flow positive pulse to balance the void generated by the roller disengagement. Fluid–Structure Interaction (FSI) simulations cannot provide quantitatively realistic results, due to the limitation of full compression of the tube, and are only used qualitatively to reveal by which way to set the inflated portion along the tube length in order to suppress backflow and achieve constant flow rate. Finally, indirect lumen volume measurements were performed numerically and an optimum design was found testing eight design approaches. These indirect fluid volume measurements assess the optimum inflated tube’s portion leading to backflow and pulsating elimination. The optimum design has an inflation portion of 75 degrees covering almost 42% of the curved part of the tube, while it has a constant zone with the maximum value of inflated lenticular cross-section, within the portion, of 55 degrees covering about 73% of the inflation portion.


1993 ◽  
Vol 118 (2) ◽  
pp. 170-172 ◽  
Author(s):  
C.G. Embree ◽  
B.H. Lesser ◽  
A.D. Crowe

The 30 apple (Malus domestica Borkh.) rootstock candidates selected for cold hardiness, known as the Kentville Stock Clone (KSC), with `McIntosh' and `Delicious' as scion cultivars, were compared at 11 years of age for tree size, weight, fruit yield, and crop efficiency under field conditions. Trunk cross-section area and tree weight were highly correlated. Tree size was similar for the two cultivars in most cases and ranged in size from semidwarf to very vigorous. Cumulative yield efficiencies varied by nearly two-fold and were not correlated with tree size. The most efficient rootstocks were KSC 28, KSC 7, and KSC 6 in the semidwarf, semivigorous, and vigorous size classifications, respectively.


2011 ◽  
Vol 409 ◽  
pp. 621-626 ◽  
Author(s):  
Charles Fischer ◽  
Patrick Terriault ◽  
Vladimir Brailovski

morphing structures are expected to play an increasingly important role in aeronautic applications, among others. Shape memory alloys (SMA) are one of the most promising candidates to date. However, work remains to be done before these structures meet the stringent requirements of their successful integration in an aeronautic context. Research has shown that SMA/Polymer interface strength can be a limiting factor in active deformable structure performance. In this study, the effect on the SMA/Polymer interface strength of various surface treatments, wire geometries and resin types are evaluated. SMA wire geometry is modified through a specific combination of cold rolling and post-deformation annealing, which is capable of maintaining SMA actuating properties while achieving required cross-section area reductions. The most promising thermomechanical processing is finally proposed but results show that further work is required before SMA active elements can safely be used in an active structure.


2018 ◽  
pp. 36-39
Author(s):  
N Ikramov ◽  
T Majidov

The article brings up data on sediment diversity at watercourse bed and on their movement in the form of ridges. The ridge form movement of sediment leads to the reduction of reservoir volume and canal cross section area, which has an effect on their carrying capacity, filling of pump station forechambers and hydroelectric station pressure basins with sediment. The presence of sediment in flow leads to abrasive deterioration of pumps, water motors and pressure pipes and to other negative consequences. Research work tasks on the study of these effects have been examined with the purpose of preventing such negative consequences. On the basis of laboratory data diagrams and relationships were obtained for ridge length, height and movement velocity vs. sediment hydraulic and geometric sizes.


2020 ◽  
Vol 47 (No. 1) ◽  
pp. 13-20
Author(s):  
Jitka Blažková ◽  
František Paprštein ◽  
Lubor Zelený ◽  
Adéla Skřivanová ◽  
Pavol Suran

The cropping of six sweet cherry cultivars that originated in the Research and Breeding Institute of Pomology at Holovousy, and a standard one, ‘Burlat’, were evaluated on three rootstocks in the period of 2007–2017. Trees planted in a spacing of 1.5 m × 5.0 m were trained as tall spindle axes utilising their natural tendency to develop a central leader. On the standard rootstock, P-TU-2, ‘Tim’ was the most productive with a mean total harvest of 47.6 kg per tree. ‘Sandra’ yielded the most on the PHLC rootstock with 56.2 kg per tree and ‘Helga’ yielded the most on Gisela 5 with a mean total harvest of 55.9 kg per tree. The mean impact of the rootstock on the tree vigour, measured upon the trunk cross section area, ranged from 148.4 cm2 on the standard rootstock P-TU-2 to 114.1 cm2 on the PHLC and 125.2 cm2 on Gisela 5 . On the standard rootstock P-TU-2, the most vigorous one according to this criterion was ‘Jacinta’ (178.0 cm2) whereas ‘Justyna’ (109.7 cm2) was the least vigorous. On the PHLC, the most vigorous was ‘Sandra’ (147.2 cm2) and the least was ‘Amid’ (94.0 cm2). The other tree characteristics were mainly dependant on the cultivar and minimally, or not at all, influenced by the rootstock vigour.


Author(s):  
Alexis Giauque ◽  
Maxime Huet ◽  
Franck Clero ◽  
Sébastien Ducruix ◽  
Franck Richecoeur

Indirect combustion noise originates from the acceleration of nonuniform temperature or high vorticity regions when convected through a nozzle or a turbine. In a recent contribution (Giauque et al., 2012, “Analytical Analysis of Indirect Combustion Noise in Subcritical Nozzles,” ASME J. Eng. Gas Turbies Power, 134(11), p. 111202) the authors have presented an analytical thermoacoustic model providing the indirect combustion noise generated by a subcritical nozzle when forced with entropy waves. This model explicitly takes into account the effect of the local changes in the cross-section area along the configuration of interest. In this article, the authors introduce this model into an optimization procedure in order to minimize or maximize the thermoacoustic noise emitted by arbitrarily shaped nozzles operating under subsonic conditions. Each component of the complete algorithm is described in detail. The evolution of the cross-section changes are introduced using Bezier's splines, which provide the necessary freedom to actually achieve arbitrary shapes. Bezier's polar coordinates constitute the parameters defining the geometry of a given individual nozzle. Starting from a population of nozzles of random shapes, it is shown that a specifically designed genetic optimization algorithm coupled with the analytical model converges at will toward a quieter or noisier population. As already described by Bloy (Bloy, 1979, “The Pressure Waves Produced by the Convection of Temperature Disturbances in High Subsonic Nozzle Flows,” J. Fluid Mech., 94(3), pp. 465–475), the results therefore confirm the significant dependence of the indirect combustion noise with respect to the shape of the nozzle, even when the operating regime is kept constant. It appears that the quietest nozzle profile evolves almost linearly along its converging and diverging sections, leading to a square evolution of the cross-section area. Providing insight into the underlying physical reason leading to the difference in the noise emission between two extreme individuals, the integral value of the source term of the equation describing the behavior of the acoustic pressure of the nozzle is considered. It is shown that its evolution with the frequency can be related to the global acoustic emission. Strong evidence suggest that the noise emission increases as the source term in the converging and diverging parts less compensate each other. The main result of this article is the definition and proposition of an acoustic emission factor, which can be used as a surrogate to the complex determination of the exact acoustic levels in the nozzle for the thermoacoustic shape optimization of nozzle flows. This acoustic emission factor, which is much faster to compute, only involves the knowledge of the evolution of the cross-section area and the inlet thermodynamic and velocity characteristics to be computed.


Sign in / Sign up

Export Citation Format

Share Document