Corrosion Resistance of Partially Stabilized Zirconia Materials to Alkaline Steel Slag

2020 ◽  
Vol 852 ◽  
pp. 119-128
Author(s):  
Liang Zhao ◽  
Qian Huang ◽  
Hua Yin Sun ◽  
Xiang Li

Partially stabilized zirconia (PSZ) materials were fabricated using 4 wt% CaO, 3 wt% MgO, and 5.4 wt% Y2O3 as stabilizing agents together with monoclinic zirconia powder. The physical properties, phase compositions, and microstructures of the Ca-PSZ, Mg-PSZ, and Y-PSZ samples were investigated by X-ray diffraction, scanning electron microscopy, and energy spectrum analysis. A crucible method was used to explore the relationship between the stabilizing agent and erosion resistance to alkaline steel slag. The results revealed that the zirconia materials stabilized by different stabilizing agents showed obvious differences in their bulk densities, apparent porosities, microstructures, and erosion resistances to alkaline steel slag. The structure of Y-PSZ showed highest density, containing a small number of uniformly distributed pores. In terms of Mg-PSZ, the intergranular bonding in its structure was observed to not be close, and the sample contained some cracks, but no pores. A large number of intragranular pores and a small number of overall pores was observed in Ca-PSZ, resulting in this material having the lowest bulk density. The pores and cracks provide the path to penetrate and diffuse for alkaline steel slag, which weakens the corrosion resistance of PSZ materials. The phase composition of the affected layers in all of the samples after corrosion was almost completely transformed from monoclinic phase to cubic phase, and the phase transition of both the original and transition layers was not obvious due to the formation of a slag film. Y-PSZ did not react with components of the steel slag such as SiO2 and Al2O3, showing the best corrosion resistance to alkaline steel slag.

1991 ◽  
Vol 6 (6) ◽  
pp. 1287-1292 ◽  
Author(s):  
Ram Srinivasan ◽  
Robert J. De Angelis ◽  
Gene Ice ◽  
Burtron H. Davis

X-ray diffraction from a synchrotron source was employed in an attempt to identify the crystal structures in zirconia ceramics produced by the sol-gel method. The particles of chemically precipitated zirconia, after calcination below 600 °C, are very fine, and have a diffracting particle size in the range of 7–15 nm. As the tetragonal and cubic structures of zirconia have similar lattice parameters, it is difficult to distinguish between the two. The tetragonal structure can be identified only by the characteristic splittings of the Bragg profiles from the “c” index planes. However, these split Bragg peaks from the tetragonal phase in zirconia overlap with one another due to particle size broadening. In order to distinguish between the tetragonal and cubic structures of zirconia, three samples were studied using synchrotron radiation source. The results indicated that a sample containing 13 mol% yttria-stabilized zirconia possessed the cubic structure with a0 = 0.51420 ± 0.00012 nm. A sample containing 6.5 mol% yttria stabilized zirconia was found to consist of a cubic phase with a0 = 0.51430 ± 0.00008 nm. Finally, a sample which was precipitated from a pH 13.5 solution was observed to have the tetragonal structure with a0 = 0.51441 ± 0.00085 nm and c0 = 0.51902 ± 0.00086.


2010 ◽  
Vol 63 ◽  
pp. 85-90 ◽  
Author(s):  
Saburo Sano ◽  
Shoji Kawakami ◽  
Yasumasa Takao ◽  
Sadatsugu Takayama ◽  
Motoyasu Sato

Stabilized zirconia shows rather high microwave absorbency at room temperature, and the absorbency become higher with increasing temperature. In this study, stabilized zirconia powder, partially stabilized zirconia powder and zirconia fiber were subjected for microwave absorption measurements at elevated temperature. Microwave absorption measurements were done by using a system consists of a microwave vector network analyzer, a circular wave-guide fixture and a vacuum furnace. Microwave absorbency was evaluated by the reflection power change from the sample in the circular wave-guide fixture under vacuum heating. Microwave absorbency of stabilized zirconia powder, partially stabilized zirconia powder and zirconia fiber gradually increased with the increase of temperature. We supposed that the increase of microwave absorbency is related to the ionic (oxygen) conduction behavior of stabilized zirconia. Stoichiometric composition ZrO2 powder was also subjected for a measurement to consider the relation between microwave absorbency and ion conduction of zirconia. As the result, stoichiometric composition ZrO2 powder was not absorbed microwave power even when the powder was heated up to 900oC because it isn’t an oxygen ion conductor.


2010 ◽  
Vol 660-661 ◽  
pp. 965-970 ◽  
Author(s):  
Wellington Claiton Leite ◽  
Adriana Scoton Antonio Chinelatto ◽  
André Maurício Brinatti ◽  
Mauricio Aparecido Ribeiro ◽  
André Vitor Chaves de Andrade ◽  
...  

The yttria-stabilized zirconia (YSZ) is used in a great variety of applications, for example, electrolytes of solid oxide fuel cells and oxygen sensors. In the study of YSZ, the particle size powders and sintering processes are important to define the final properties of the zirconia products. The objectives of this work were to determine the phases and the crystalline size using X-Ray Diffraction (XRD) data and the Rietveld Method (RM) of the YSZ powders obtained by chemical synthesis based on the Pechini method. It was used ZrOCl2.8H2O and Y(NO3)3.5H2O as precursors reagents. After calcination at 550oC during 24 hours, the powder was analyzed by XRD and scanning electronic microscopy (SEM). From XRD and using Rietveld method were verified that there is only cubic phase with lattice parameter a = 5.1307(1) Å and the space group Fm3m. Due to substitution of the Zr atoms in the Y atoms sites, there were vacancies in 17.72 % of O atoms sites. However, the percentage of substitution of Zr atoms in Y atoms sites in the structure not was determinate because the curves of atomic scattering of them are very similar. Using Scherrer equation and considering anisotropy effect, the average crystalline size was determinate: 10,43 nm (c axis) and 10,39 (b axis). This spherical symmetry also observed for SEM.


2011 ◽  
Vol 335-336 ◽  
pp. 721-727
Author(s):  
Hong Gang Sun ◽  
Shuang Zhi Yan ◽  
Peng Tao Li ◽  
Qing Hua Tan ◽  
Ai Jun Wu

The zirconia refractories were prepared using partially stabilized zirconia grain and monoclinic zirconia powder as the matrix, partially stabilized zirconia particles as the aggregate, and phenolic resin as the binder, and four sizes of monoclinic zirconia powder (D50=1 μm, 3 μm, 6 μm, 10 μm) were used as additives. Besides, an improved specimen was prepared using a specific monoclinic zirconia powder as additive. Properties of specimens with different sizes of m-ZrO2powders were researched, including apparent porosity, bulk density, cold modulus of rupture, pore size distribution. Moreover, phase composition and microstructure were analyzed. The results show that, particle size of monoclinic zirconia powders greatly affect the sintering of materials. The specimens with finer m-ZrO2powder have lower porosity, higher bulk density and cold modulus of rupture, and the grain boundaries of zirconia particles were fuzzy, showing that the matrix of the specimens were almost sintered completely. While in specimens using coarser m-ZrO2powder, the grain boundaries of zirconia particles were clear, showing that the matrix of the specimens were not sintered completely.. Though finer monoclinic zirconia powder promoted the sintering of materials in the test, it had negative impact on the microporus structure, for large pores were observed in the specimen with fine m-ZrO2powder. Finally, the improved specimen with promoted sintering and optimized microstructure as well as phase composition was obtained by using specific monoclinic zirconia powder as additive.


1983 ◽  
Vol 30 ◽  
Author(s):  
R.W. Knoll ◽  
E.R. Bradley

ABSTRACTThin ZrO2 -Y2 O3 coatings ranging in composition from 3 to 15 mole % Y2 O3 were produced by rf sputter deposition. This composition range spanned the region on the equilibrium ZrO2 -Y2O3 phase diagram corresponding to partially stabilized zirconia (a mixture of tetragonal ZrO2 and cubic solid solution). Microstructural characteristics and crystalline phase composition of as-deposited and heat treated films (1100°C and 1500°C) were determined by transmission electron microscopy (TEM) and by x-ray diffraction (XRD). Effects of substrate bias (0 ∼ 250 volts), which induced ion bombardment of the film during growth, were also studied. The as-deposited ZrO2-Y2O3 films were single phase over the composition range studied, and XRD data indicated considerable local atomic disorder in the lattice. Films produced at low bias contained intergranular voids, pronounced columnar growth, and porosity between columns. At high bias, the microstructure was denser, and films contained high compressive stress. After heat treatment, all deposits remained single phase, therefore a microstructure and precipitate distribution characteristic of toughened, partially stabilized zirconia appears to be difficult to achieve in vapor deposited zirconia coatings.


2020 ◽  
Vol 46 (7) ◽  
pp. 9691-9697 ◽  
Author(s):  
Guangdi Zhou ◽  
Peng Jin ◽  
Yuan Wang ◽  
Guangling Pei ◽  
Ju Wu ◽  
...  

1995 ◽  
Vol 397 ◽  
Author(s):  
S. Fujitsu ◽  
M. Sawai ◽  
K. Kawamura ◽  
H. Hosono

ABSTRACTThe surface of partially stabilized zirconia ceramics was irradiated by a Nd:YAG laser in various atmospheres. Zirconia strongly absorbed YAG's laser beam and changed its chemistry and microstructure. The change of color of zirconia into gold was due to the formation of zirconium nitride (ZrN) observed on the irradiated surface in air, nitrogen or ammonia, which was confirmed by X-ray diffraction and secondary ion mass spectroscopy. The observed ZrN phase was 10-20 um in thickness at the irradiated area by the direct beam. The adhesion between formed ZrN and YSZ substrate was very weak.


2007 ◽  
Vol 336-338 ◽  
pp. 1194-1196
Author(s):  
Zhi Ping Shen ◽  
Shu Cai ◽  
Zhen Dong

Magnesia, ceria partially stabilized zirconia (Ce,Mg)-PSZ ceramics with net shape microstructure are prepared using a processing method similar to that of conventional Mg-PSZ ceramics, then heat-treated at 1500°C for different time. Microstructure and phase composition of (Ce, Mg)-PSZ samples with different amount of CeO2 doped were investigated using SEM and X-ray diffraction. The addition of CeO2 could impede the formation of monoclinic phase and inhibit the growth of cubic grains. A microstructure with net-shape cubic grains, in which tetragonal precipitates interweave to a nanoporous structure is obtained by adding 4∼8 mol% CeO2 in 10mol% MgO doped zirconia matrix and then heat treatment at 1500°C for different time. The precipitate morophology might be related with the addition of CeO2 and the heat treatment temperatures.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 870
Author(s):  
Nursultan Kainbayev ◽  
Mantas Sriubas ◽  
Kristina Bockute ◽  
Darius Virbukas ◽  
Giedrius Laukaitis

Scandia alumina stabilized zirconia (ScAlSZ) thin films were deposited using e-beam evaporation, and the effects of deposition parameters on the structure and chemical composition were investigated. The analysis of thin films was carried out using Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction Analysis (XRD) and Raman spectroscopy methods. It was found that the chemical composition of ScAlSZ thin films was different from the chemical composition of the initial powder. Moreover, the Al concentration in thin films depends on the deposition rate, resulting in a lower concentration using a higher deposition rate. XPS analysis revealed that ZrOx, oxygen vacancies, high concentrations of Al2O3 and metallic Al exist in thin films and influence their structural properties. The crystallinity is higher when the concentration of Al is lower (higher deposition rate) and at higher substrate temperatures. Further, the amount of cubic phase is higher and the amount of tetragonal phase lower when using a higher deposition rate.


Sign in / Sign up

Export Citation Format

Share Document